Nothing
gk <- function(x, centers, memberships, m=2,
dmetric="sqeuclidean", pw=2, alginitv="kmpp",
alginitu="imembrand", nstart=1, iter.max=1e03, con.val=1e-09,
fixcent=FALSE, fixmemb=FALSE, stand=FALSE, numseed){
if(missing(x))
stop("Missing data set")
if(is.null(x))
stop("Data set is null")
if((is.data.frame(x)) || (is.vector(x)))
x <- as.matrix(x)
if(!is.matrix(x))
stop("Data set must be a vector, data frame or matrix")
if(any(is.na(x)))
stop("Data set should not contain NA values. Remove NAs and try again")
if(!is.numeric(x))
stop("Data set must be a numeric vector, data frame or matrix")
n <- nrow(x) ; p <- ncol(x)
if(missing(centers))
stop("Missing argument 'centers'")
if(is.data.frame(centers))
centers <- as.matrix(centers)
if(is.matrix(centers)){
if(is.null(centers))
stop("Centers contains no data")
if(any(is.na(centers)))
stop("Centers should not contain NA values")
if(!is.numeric(centers))
stop("Centers should be numeric")
else
k <- nrow(centers)
}
else{
if(!is.numeric(centers))
stop("Centers should be an integer for the number of clusters or a numeric prototypes matrix")
k <- ceiling(centers)
}
if((k < 1) || (k > n))
stop(paste("k, number of clusters should be between 1 and", n, ". Check the value of 'centers' argument"))
if(!missing(numseed)){
if(!is.numeric(numseed))
stop("Argument numseed should be a number")
else
set.seed(numseed)
}
alginitv <- match.arg(alginitv, inaparc::get.algorithms("prototype"))
compv <- parse(text = paste0("inaparc::", alginitv, "(x,", k, ")$v"))
algsinitu <- match.arg(alginitu, inaparc::get.algorithms("membership"))
alginitu <- match.arg(alginitu, algsinitu)
if(alginitu=="imembrand")
compu <- parse(text = paste0("inaparc::", alginitu, "(n,", k, ")$u"))
else
compu <- parse(text = paste0("inaparc::", alginitu, "(x,", k, ")$u"))
compd <- parse(text = paste0(".compdist(x[i,], v[j,], dmetric='", dmetric, "', p=", pw, ")"))
if(!is.matrix(centers))
centers <- matrix(nrow=k, ncol=p, eval(compv))
if(!missing(memberships)){
if(is(memberships, "data.frame"))
memberships <- as.matrix(memberships)
if(!is(memberships, "matrix"))
stop("The initial membership degrees matrix is not a numeric data frame or matrix")
}else{
memberships <- matrix(nrow = n, ncol = k, eval(compu))
}
if(is.null(memberships))
stop("The initial membership matrix cannot be empty")
if(any(!is.numeric(memberships)))
stop("The initial membership matrix is not a numeric data.frame or matrix")
if(any(is.na(memberships)))
stop("The initial membership matrix should not contain NAs")
if(n != nrow(memberships))
stop("The number of rows of initial membership matrix is different from that of data set")
if(k != ncol(memberships))
stop("The number of columns of initial membership matrix is not equal to k, number of clusters")
if(sum(memberships) != n)
memberships = memberships/apply(memberships, 1, sum)
if(!is.numeric(m))
stop("The fuzziness exponent (m) should be a number")
if(m < 1)
stop("The fuzziness exponent (m) should be a number equals to or greater than 1")
if(!is.numeric(nstart))
stop("Number of starts must be integer")
if(nstart < 1)
stop("Number of starts cannot be less than 1")
if(nstart%%ceiling(nstart) > 0)
nstart <- ceiling(nstart)
if(!is.numeric(con.val))
stop("Convergence value must be a number")
if(con.val <= 0)
stop("Convergence value can not be 0 or a negatif value")
if(!is.numeric(iter.max))
stop("Maximum number of iteration must be a positive integer")
else
iter.max <- ceiling(iter.max)
if(iter.max <= 1)
stop("Maximum number of iterations must be equal to or greater than 1")
if(!is.logical(fixcent))
stop("Argument 'fixcent' should be a TRUE or FALSE")
if(!is.logical(fixmemb))
stop("Argument 'fixmemb' should be a TRUE or FALSE")
if(fixcent && fixmemb)
stop("Arguments 'fixcent' and 'fixmemb' should not be a TRUE at the same time")
if(!is.logical(stand))
stop("Value of argument 'stand' should be TRUE or FALSE")
if(stand){
x <- scale(x, center = TRUE, scale = TRUE)[, ]
centers <- scale(centers, center = TRUE, scale = TRUE)[, ]
}
func.val <- numeric(nstart)
comp.time <- numeric(nstart)
iter.num <- numeric(nstart)
best.func <- Inf
for(start.idx in 1:nstart){
if(start.idx > 1){
set.seed(as.integer(Sys.time()) + start.idx)
if(!fixcent)
centers <- eval(compv)
if(!fixmemb)
memberships <- eval(compu)
if(stand)
centers <- scale(centers, center = TRUE, scale = TRUE)[, ]
if(!missing(numseed))
set.seed(numseed)
}
v0 <- v <- centers
u <- memberships
d <- matrix(nrow = n, ncol = k, 0)
f <- array(0, c(p, p, k))
prevu <- u + 2*con.val
iter <- 0
cputime <- system.time(
while((iter < iter.max) && (sum(abs(prevu - u)) > con.val)){
iter <- iter + 1
prevd <- d; prevu <- u; prevv <- v
v <- t(u^m) %*% x / colSums(u^m)
for(j in 1:k){
f[,,j] <- aj <- as.matrix(nrow=p, ncol=p, 0) ; aj <- f[,,j]
for(i in 1:n)
aj <- aj + (u[i,j]^m) * (x[i,]-v[j,]) %*% t((x[i,]-v[j,]))
f[,,j] <- aj <- aj / sum(u[,j]^m)
alpha <- sum(u[,j]) / n
for(i in 1:n)
d[i,j] <- (2*pi)^(n/2) * sqrt(det(aj)) *
t(x[i,]-v[j,]) %*% (MASS::ginv(aj, tol = 0)) %*% (x[i,]-v[j,])/alpha
}
for(i in 1:n)
u[i,] <- 1/(((d[i,])^(1/(m-1))) * sum((1/(d[i,]))^(1/(m-1))))
if(any(is.na(u)) == TRUE || any(is.infinite(u)) == TRUE){
d <- prevd; u <- prevu ; v <- prevv
}
for(i in 1:n)
for(j in 1:k)
if(u[i,j] < 0)
u[i,j] <- 0
else if(u[i,j] > 1)
u[i,j] <- 1
}
)
comp.time[start.idx] <- cputime[1]
iter.num[start.idx] <- iter
obj.func <- sum((u^m) * d)
func.val[start.idx] <- obj.func
if(obj.func < best.func){
best.func <- obj.func
best.d <- d
best.u <- u
best.v <- v
best.f <- f
best.start <- start.idx
}
}
clabels <- crisp(best.u)
csize <- numeric(k)
for(i in 1:k)
csize[i] <- sum(clabels==i)
csumsqrs <- .sumsqr(x, best.v, clabels)
if(is.null(rownames(x)))
rnames <- paste(1:n)
else
rnames <- rownames(x)
if(is.null(colnames(x)))
cnames <- paste("p", 1:p, sep = "")
else
cnames <- colnames(x)
rownames(x) <- rnames; colnames(x) <- cnames
rownames(best.v) <- paste("Cluster", 1:k, sep = " ")
colnames(best.v) <- cnames
colnames(v0) <- colnames(best.v)
rownames(v0) <- rownames(best.v)
rownames(best.u) <- rnames
colnames(best.u) <- rownames(best.v)
rownames(best.d) <- rnames
colnames(best.d) <- rownames(best.v)
names(clabels) <- paste(1:n, sep = " ")
names(csize) <- paste(c(1:k), sep = " ")
result = list()
result$u <- best.u
result$t <- NULL
result$v <- best.v
result$d <- best.d
result$f <- best.f
result$x <- x
result$v0 <- v0
result$cluster <- clabels
result$csize <- csize
result$sumsqrs <- csumsqrs
result$k <- k
result$m <- m
result$eta <- NULL
result$a <- NULL
result$b <- NULL
result$beta <- NULL
result$delta <- NULL
result$gamma <- NULL
result$omega <- NULL
result$ent <- NULL
result$iter <- iter.num
result$best.start <- best.start
result$func.val <- func.val
result$comp.time <- comp.time
result$inpargs <- list()
result$inpargs[1] <- as.integer(iter.max)
result$inpargs[2] <- con.val
result$inpargs[3] <- dmetric
result$inpargs[4] <- alginitv
result$inpargs[5] <- alginitu
result$inpargs[6] <- fixcent
result$inpargs[7] <- fixmemb
result$inpargs[8] <- stand
names(result$inpargs) <- c("iter.max", "con.val", "dmetric", "alginitv", "alginitu", "fixcent", "fixmemb", "stand")
result$algorithm <- "GK"
result$call <- match.call()
class(result) <- c("ppclust")
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.