Nothing
#' Prediction intervals for future observations based on linear random effects models
#'
#' \code{lmer_pi_unstruc()} calculates a bootstrap calibrated prediction interval for one or more
#' future observation(s) based on linear random effects models as described in section
#' 3.2.4. of Menssen and Schaarschmidt (2022).
#' Please note, that the bootstrap calibration used here does not consider the sampling
#' structure of the future data, since the calibration values are drawn randomly from
#' bootstrap data sets that have the same structure as the historical data.
#'
#'
#' @param model a random effects model of class lmerMod
#' @param newdat a \code{data.frame} with the same column names as the historical data
#' on which the model depends
#' @param m number of future observations
#' @param alternative either "both", "upper" or "lower". \code{alternative} specifies
#' if a prediction interval or an upper or a lower prediction limit should be computed
#' @param alpha defines the level of confidence (1-\code{alpha})
#' @param nboot number of bootstraps
#' @param delta_min lower start value for bisection
#' @param delta_max upper start value for bisection
#' @param tolerance tolerance for the coverage probability in the bisection
#' @param traceplot if \code{TRUE}: Plot for visualization of the bisection process
#' @param n_bisec maximal number of bisection steps
#' @param algorithm either "MS22" or "MS22mod" (see details)
#'
#' @details This function returns bootstrap-calibrated prediction intervals as well as
#' lower or upper prediction limits.
#'
#' If \code{algorithm} is set to "MS22", both limits of the prediction interval
#' are calibrated simultaneously using the algorithm described in Menssen and
#' Schaarschmidt (2022), section 3.2.4. The calibrated prediction interval is given
#' as
#'
#' \deqn{[l,u] = \hat{\mu} \pm q^{calib} \sqrt{\widehat{var}(\hat{\mu}) + \sum_{c=1}^{C+1}
#' \hat{\sigma}^2_c}}
#'
#' with \eqn{\hat{\mu}} as the expected future observation (historical mean) and
#' \eqn{\hat{\sigma}^2_c} as the \eqn{c=1, 2, ..., C} variance components and \eqn{\hat{\sigma}^2_{C+1}}
#' as the residual variance obtained from the random
#' effects model fitted with \code{lme4::lmer()} and \eqn{q^{calib}} as the as the bootstrap-calibrated
#' coefficient used for interval calculation. \cr
#'
#' If \code{algorithm} is set to "MS22mod", both limits of the prediction interval
#' are calibrated independently from each other. The resulting prediction interval
#' is given by
#'
#' \deqn{[l,u] = \Big[\hat{\mu} - q^{calib}_l \sqrt{\widehat{var}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}^2_c}, \quad
#' \hat{\mu} + q^{calib}_u \sqrt{\widehat{var}(\hat{\mu}) + \sum_{c=1}^{C+1} \hat{\sigma}^2_c} \Big].}
#'
#' Please note, that this modification does not affect the calibration procedure, if only
#' prediction limits are of interest. \cr
#'
#' This function is an direct implementation of the PI given in Menssen and Schaarschmidt
#' 2022 section 3.2.4.
#'
#'
#' @return \code{lmer_pi_futvec()} returns an object of class \code{c("predint", "normalPI")}
#' with prediction intervals or limits in the first entry (\code{$prediction}).
#'
#' @references Menssen and Schaarschmidt (2022): Prediction intervals for all of M future
#' observations based on linear random effects models. Statistica Neerlandica,
#' \doi{10.1111/stan.12260}
#'
#'
#' @export
#'
#' @importFrom graphics abline lines
#' @importFrom lme4 fixef VarCorr bootMer
#' @importFrom stats vcov
#' @importFrom methods is
#'
#' @examples
#' # loading lme4
#' library(lme4)
#'
#' # Fitting a random effects model based on c2_dat1
#' fit <- lmer(y_ijk~(1|a)+(1|b)+(1|a:b), c2_dat1)
#' summary(fit)
#'
#' # Prediction interval using c2_dat2 as future data
#' \donttest{pred_int <- lmer_pi_unstruc(model=fit, newdat=c2_dat2, alternative="both", nboot=100)
#' summary(pred_int)}
#'
#' # Upper prediction limit for m=3 future observations
#' \donttest{pred_u <- lmer_pi_unstruc(model=fit, m=3, alternative="upper", nboot=100)
#' summary(pred_u)}
#'
#' # Please note that nboot was set to 100 in order to decrease computing time
#' # of the example. For a valid analysis set nboot=10000.
#'
lmer_pi_unstruc <- function(model,
newdat=NULL,
m=NULL,
alternative="both",
alpha=0.05,
nboot=10000,
delta_min=0.01,
delta_max=10,
tolerance = 1e-3,
traceplot=TRUE,
n_bisec=30,
algorithm="MS22"){
# Model must be of class lmerMod
if(!is(model, "lmerMod")){
stop("class(model) != lmerMod")
}
# Model must be a random effect model
if(length(fixef(model)) != 1){
stop("length(fixef(model)) must be 1 (the model must be a random effects model)")
}
### All random effects must be specified as (1|random_effect)
# Get forumla object
f <- model@call$formula
# Right part of formula as a string
fs <- as.character(f)[3]
# First substitue all whitespace characters with nothing ("") to make shure they don't disturb.
# '\\s' is regex for 'all whitespace characters like space, tab, line break, ...)'
fs <- gsub("\\s", "", fs)
# Are there any occurances where '|' is not preceded by a '1'?
# '[^1]' is regex for 'not 1' and '\\|' is just regex for '|'.
wrong_formula <- grepl('[^1]\\|', fs)
if(wrong_formula){
stop("Random effects must be specified as (1|random_effect)")
}
# Relationship between newdat and m
if(is.null(newdat) & is.null(m)){
stop("newdat and m are both NULL")
}
if(!is.null(newdat) & !is.null(m)){
stop("newdat and m are both defined")
}
### m
if(is.null(m) == FALSE){
# m must be integer
if(!isTRUE(m == floor(m))){
stop("m must be integer")
}
if(length(m) > 1){
stop("length(m) > 1")
}
}
### Actual data
if(is.null(newdat) == FALSE){
# newdat needs to be a data.frame
if(is.data.frame(newdat)==FALSE){
stop("newdat is not a data.frame")
}
# colnames of historical data and new data must be the same
if(all(colnames(model@frame) == colnames(newdat))==FALSE){
stop("colnames(model@frame) and colnames(newdat) are not the same.\nHave you transformed the depenent variable within the lmer() call?\nAt their current stage, the lmer_pi_... functions do not work with\ntransformations inside lmer()")
}
# Define m
m <- nrow(newdat)
}
# alternative must be defined
if(isTRUE(alternative!="both" && alternative!="lower" && alternative!="upper")){
stop("alternative must be either both, lower or upper")
}
#-----------------------------------------------------------------------
# algorithm must be set properly
if(algorithm != "MS22"){
if(algorithm != "MS22mod"){
stop("algoritm must be either MS22 of MS22mod")
}
}
# alternative must be defined
if(isTRUE(alternative!="both" && alternative!="lower" && alternative!="upper")){
stop("alternative must be either both, lower or upper")
}
#----------------------------------------------------------------------
# Extraction of the intercept
mu_hat <- unname(fixef(model))
# SE for the future observation
se_y_star_hat <- sqrt(sum(c(as.vector(vcov(model)),
data.frame(VarCorr(model))$vcov)))
# Number of observations
n_obs <- nrow(model@frame)
# stop if m > n_obs
if(m > n_obs){
stop("m > numbers of original observations")
}
# stop if m < 1
if(m > n_obs){
stop("m < 1")
}
#----------------------------------------------------------------------
### Bootstrapping future observations
# Extracting the observations
obs_fun <- function(.){
bs_dat <- .@frame[,1]
}
# Bootstrap for the observations
boot_obs <- bootMer(model, obs_fun, nsim = nboot)
# # Smallest BS observation
# bs_y_min <- min(t(boot_obs$t))
#
# # Biggest BS observation
# bs_y_max <- max(t(boot_obs$t))
# Bootstrapped data sets
bsdat_list <- as.list(as.data.frame(t(boot_obs$t)))
# Take only m random observation per data set
ystar_fun <- function(.){
y_star <- sample(x=., size=m)
y_star_min <- min(y_star)
y_star_max <- max(y_star)
c("y_star_min"=y_star_min,
"y_star_max"=y_star_max)
}
# List with future observations (y_star)
ystar_list <- lapply(bsdat_list, ystar_fun)
#----------------------------------------------------------------------
### Bootstrapping the variance of y_star
# Function to get se(y_star)
se_fun <- function(.){
bs_var_y_star <- sum(c(as.vector(vcov(.)), data.frame(VarCorr(.))$vcov))
bs_se_y_star <- sqrt(bs_var_y_star)
bs_mu <- unname(fixef(.))
c(bs_mu=bs_mu, bs_se_y_star=bs_se_y_star)
}
# Bootstrap
boot_se <- bootMer(model, se_fun, nsim = nboot)
# Bootstrapped Parameters
bs_params <- data.frame(boot_se$t)
# Bootstrapped se
bs_se<- as.list(as.vector(bs_params$bs_se_y_star))
# Bootstrapped mu
bs_mu<- as.list(as.vector(bs_params$bs_mu))
#-----------------------------------------------------------------------
### Calculation of the calibrated quantile
if(alternative=="lower"){
quant_calib <- bisection(y_star_hat = bs_mu,
pred_se = bs_se,
y_star = ystar_list,
alternative = alternative,
quant_min = delta_min,
quant_max = delta_max,
n_bisec = n_bisec,
tol = tolerance,
alpha = alpha,
traceplot=traceplot)
}
# Calibration for of upper prediction limits
if(alternative=="upper"){
quant_calib <- bisection(y_star_hat = bs_mu,
pred_se = bs_se,
y_star = ystar_list,
alternative = alternative,
quant_min = delta_min,
quant_max = delta_max,
n_bisec = n_bisec,
tol = tolerance,
alpha = alpha,
traceplot=traceplot)
}
# Calibration for prediction intervals
if(alternative=="both"){
# Direct implementation of M and S 2021
if(algorithm=="MS22"){
quant_calib <- bisection(y_star_hat = bs_mu,
pred_se = bs_se,
y_star = ystar_list,
alternative = alternative,
quant_min = delta_min,
quant_max = delta_max,
n_bisec = n_bisec,
tol = tolerance,
alpha = alpha,
traceplot=traceplot)
}
# Modified version of M and S 21
if(algorithm=="MS22mod"){
quant_calib_lower <- bisection(y_star_hat = bs_mu,
pred_se = bs_se,
y_star = ystar_list,
alternative = "lower",
quant_min = delta_min,
quant_max = delta_max,
n_bisec = n_bisec,
tol = tolerance,
alpha = alpha/2,
traceplot=traceplot)
quant_calib_upper <- bisection(y_star_hat = bs_mu,
pred_se = bs_se,
y_star = ystar_list,
alternative = "upper",
quant_min = delta_min,
quant_max = delta_max,
n_bisec = n_bisec,
tol = tolerance,
alpha = alpha/2,
traceplot=traceplot)
quant_calib <- c(quant_calib_lower, quant_calib_upper)
}
}
#-----------------------------------------------------------------------
### Define the output object
out <- normal_pi(mu=mu_hat,
pred_se=se_y_star_hat,
m=m,
q=quant_calib,
alternative=alternative,
newdat=newdat,
histdat=model@frame,
algorithm=algorithm)
attr(out, "alpha") <- alpha
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.