Nothing
#' @include internal.R ConservationProblem-class.R
NULL
#' Specify relative targets
#'
#' Specify targets expressed as a proportion (between 0 and 1) of the maximum
#' level of representation of each feature in the study area.
#' Please note that proportions
#' are scaled according to the features' total abundances in the study area
#' (including any locked out planning units, or planning units with `NA`
#' cost values) using the [feature_abundances()] function.
#' Note that this function is designed to be used with [add_auto_targets()]
#' and [add_group_targets()].
#'
#' @param targets `numeric` vector that specifies targets for each
#' of the features. If a single `numeric` value is specified, then all features
#' are assigned the same proportion-based target. Note that values
#' range between 0 and 1 (corresponding to 0% and 100% respectively).
#'
#' @inheritParams spec_absolute_targets
#'
#' @section Mathematical formulation:
#' This method involves setting target thresholds based on a proportion.
#' To express this mathematically, we will define the following terminology.
#' Let \eqn{f} denote the total abundance of a feature (e.g., geographic
#' range size), and \eqn{a} the relative target for the feature
#' (per `targets`).
#' Given this terminology, the target threshold (\eqn{t}) for the feature
#' is calculated as follows.
#' \deqn{t = f \times a}
#'
#' @inherit spec_jung_targets seealso return
#'
#' @seealso
#' To add relative targets directly to a [problem()], see
#' [add_relative_targets()].
#'
#' @family methods
#'
#' @examples
#' \dontrun{
#' # set seed for reproducibility
#' set.seed(500)
#'
#' # load data
#' sim_complex_pu_raster <- get_sim_complex_pu_raster()
#' sim_complex_features <- get_sim_complex_features()
#'
#' # create base problem
#' p0 <-
#' problem(sim_complex_pu_raster, sim_complex_features) %>%
#' add_min_set_objective() %>%
#' add_binary_decisions() %>%
#' add_default_solver(verbose = FALSE)
#'
#' # create problem with targets of 10% for each feature
#' p1 <-
#' p0 %>%
#' add_auto_targets(method = spec_relative_targets(targets = 0.1))
#'
#' # solve problem
#' s1 <- solve(p1)
#'
#' # plot solution
#' plot(s1, main = "solution based on 10% targets", axes = FALSE)
#'
#' # targets can also be specified for each feature separately.
#' # to demonstrate this, we will set a target value for each
#' # feature based on a random percentage between 10% and 80%
#' target_values <- runif(terra::nlyr(sim_complex_features), 0.1, 0.8)
#'
#' # create problem with targets defined separately for each feature
#' p2 <-
#' p0 %>%
#' add_auto_targets(method = spec_relative_targets(targets = target_values))
#'
#' # solve problem
#' s2 <- solve(p2)
#'
#' # plot solution
#' plot(s2, main = "solution based on varying targets", axes = FALSE)
#' }
#' @export
spec_relative_targets <- function(targets, ...) {
# assert arguments are valid
assert_valid_method_arg(targets)
assert_required(targets)
rlang::check_dots_empty()
# return new method
new_target_method(
name = "Relative targets",
type = "relative",
fun = calc_relative_targets,
args = list(targets = targets)
)
}
calc_relative_targets <- function(x, features, targets,
call = fn_caller_env()) {
# assert that arguments are valid
assert_required(x, call = call)
assert_required(targets, call = call)
assert(
# x
is_conservation_problem(x),
has_single_zone(x),
# features
is_integer(features),
all(features >= 1),
all(features <= x$number_of_features()),
call = call,
.internal = TRUE
)
assert(
# targets
is.numeric(targets),
is_match_of(length(targets), c(1, number_of_features(x))),
all_finite(targets),
all_proportion(targets),
call = call
)
# if needed, duplicate target values for each feature
if (identical(length(targets), 1L)) {
targets <- rep(targets, x$number_of_features())
}
# return targets
targets[features]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.