R/plot.R

Defines functions plot_cross_validation_metric dyplot.prophet add_changepoints_to_plot plot_seasonality plot_yearly plot_weekly seasonality_plot_df plot_forecast_component prophet_plot_components plot.prophet df_for_plotting

Documented in add_changepoints_to_plot df_for_plotting dyplot.prophet plot_cross_validation_metric plot_forecast_component plot.prophet plot_seasonality plot_weekly plot_yearly prophet_plot_components seasonality_plot_df

# Copyright (c) Facebook, Inc. and its affiliates.

# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

#' Merge history and forecast for plotting.
#'
#' @param m Prophet object.
#' @param fcst Data frame returned by prophet predict.
#'
#' @importFrom dplyr "%>%"
#' @keywords internal
df_for_plotting <- function(m, fcst) {
  # Make sure there is no y in fcst
  fcst$y <- NULL
  df <- m$history %>%
    dplyr::select(ds, y) %>%
    dplyr::full_join(fcst, by = "ds") %>%
    dplyr::arrange(ds)
  return(df)
}

#' Plot the prophet forecast.
#'
#' @param x Prophet object.
#' @param fcst Data frame returned by predict(m, df).
#' @param uncertainty Optional boolean indicating if the uncertainty interval for yhat
#'  should be plotted, which will only be done if x$uncertainty.samples > 0.
#'  Must be present in fcst as yhat_lower and yhat_upper.
#' @param plot_cap Boolean indicating if the capacity should be shown in the
#'  figure, if available.
#' @param xlabel Optional label for x-axis
#' @param ylabel Optional label for y-axis
#' @param ... additional arguments
#'
#' @return A ggplot2 plot.
#'
#' @examples
#' \dontrun{
#' history <- data.frame(ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
#'                       y = sin(1:366/200) + rnorm(366)/10)
#' m <- prophet(history)
#' future <- make_future_dataframe(m, periods = 365)
#' forecast <- predict(m, future)
#' plot(m, forecast)
#' }
#'
#' @export
plot.prophet <- function(x, fcst, uncertainty = TRUE, plot_cap = TRUE,
                         xlabel = 'ds', ylabel = 'y', ...) {
  df <- df_for_plotting(x, fcst)
  gg <- ggplot2::ggplot(df, ggplot2::aes(x = ds, y = y)) +
    ggplot2::labs(x = xlabel, y = ylabel)
  if (exists('cap', where = df) && plot_cap) {
    gg <- gg + ggplot2::geom_line(
      ggplot2::aes(y = cap), linetype = 'dashed', na.rm = TRUE)
  }
  if (x$logistic.floor && exists('floor', where = df) && plot_cap) {
    gg <- gg + ggplot2::geom_line(
      ggplot2::aes(y = floor), linetype = 'dashed', na.rm = TRUE)
  }
  if (uncertainty && x$uncertainty.samples && exists('yhat_lower', where = df)) {
    gg <- gg +
      ggplot2::geom_ribbon(ggplot2::aes(ymin = yhat_lower, ymax = yhat_upper),
                           alpha = 0.2,
                           fill = "#0072B2",
                           na.rm = TRUE)
  }
  gg <- gg +
    ggplot2::geom_point(na.rm=TRUE) +
    ggplot2::geom_line(ggplot2::aes(y = yhat), color = "#0072B2",
                       na.rm = TRUE) +
    ggplot2::theme(aspect.ratio = 3 / 5)
  return(gg)
}

#' Plot the components of a prophet forecast.
#' Prints a ggplot2 with whichever are available of: trend, holidays, weekly
#' seasonality, yearly seasonality, and additive and multiplicative extra
#' regressors.
#'
#' @param m Prophet object.
#' @param fcst Data frame returned by predict(m, df).
#' @param uncertainty Optional boolean indicating if the uncertainty interval should be
#'  plotted for the trend, from fcst columns trend_lower and trend_upper.This will
#'  only be done if m$uncertainty.samples > 0.
#' @param plot_cap Boolean indicating if the capacity should be shown in the
#'  figure, if available.
#' @param weekly_start Integer specifying the start day of the weekly
#'  seasonality plot. 0 (default) starts the week on Sunday. 1 shifts by 1 day
#'  to Monday, and so on.
#' @param yearly_start Integer specifying the start day of the yearly
#'  seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts by 1 day
#'  to Jan 2, and so on.
#' @param render_plot Boolean indicating if the plots should be rendered.
#'  Set to FALSE if you want the function to only return the list of panels.
#'
#' @return Invisibly return a list containing the plotted ggplot objects
#'
#' @export
#' @importFrom dplyr "%>%"
prophet_plot_components <- function(
  m, fcst, uncertainty = TRUE, plot_cap = TRUE, weekly_start = 0,
  yearly_start = 0, render_plot = TRUE
) {
  dt <- diff(time_diff(m$history$ds, m$start))
  min.dt <- min(dt[dt > 0])
  # Plot the trend
  panels <- list(
    plot_forecast_component(m, fcst, 'trend', uncertainty, plot_cap))
  # Plot holiday components, if present.
  if (!is.null(m$train.holiday.names) && ('holidays' %in% colnames(fcst))) {
    panels[[length(panels) + 1]] <- plot_forecast_component(
      m, fcst, 'holidays', uncertainty, FALSE)
  }
  # Plot weekly seasonality, if present
  if ("weekly" %in% colnames(fcst)) {
    if (min.dt < 1) {
      panels[[length(panels) + 1]] <- plot_seasonality(m, 'weekly', uncertainty)
    } else {
      panels[[length(panels) + 1]] <- plot_weekly(m, uncertainty, weekly_start)
    }
  }
  # Plot yearly seasonality, if present
  if ("yearly" %in% colnames(fcst)) {
    panels[[length(panels) + 1]] <- plot_yearly(m, uncertainty, yearly_start)
  }
  # Plot other seasonalities
  for (name in sort(names(m$seasonalities))) {
    if (!(name %in% c('weekly', 'yearly')) &&
        (name %in% colnames(fcst))) {
      if (m$seasonalities[[name]]$period == 7) {
        panels[[length(panels) + 1]] <- plot_weekly(m, uncertainty,
                                                    weekly_start, name)
      } else if (m$seasonalities[[name]]$period == 365.25) {
        panels[[length(panels) + 1]] <- plot_yearly(m, uncertainty,
                                                    yearly_start, name)
      } else {
        panels[[length(panels) + 1]] <- plot_seasonality(m, name, uncertainty)
      }
    }
  }
  # Plot extra regressors
  regressors <- list(additive = FALSE, multiplicative = FALSE)
  for (name in names(m$extra_regressors)) {
    regressors[[m$extra_regressors[[name]]$mode]] <- TRUE
  }
  for (mode in c('additive', 'multiplicative')) {
    if ((regressors[[mode]]) &
        (paste0('extra_regressors_', mode) %in% colnames(fcst))
    ) {
      panels[[length(panels) + 1]] <- plot_forecast_component(
        m, fcst, paste0('extra_regressors_', mode), uncertainty, FALSE)
    }
  }

  if (render_plot) {
    # Make the plot.
    grid::grid.newpage()
    grid::pushViewport(grid::viewport(layout = grid::grid.layout(length(panels),
                                                                 1)))
    for (i in seq_along(panels)) {
      print(panels[[i]], vp = grid::viewport(layout.pos.row = i,
                                             layout.pos.col = 1))
    }
  }
  return(invisible(panels))
}

#' Plot a particular component of the forecast.
#'
#' @param m Prophet model
#' @param fcst Dataframe output of `predict`.
#' @param name String name of the component to plot (column of fcst).
#' @param uncertainty Optional boolean to plot uncertainty intervals, which will 
#'  only be done if m$uncertainty.samples > 0.
#' @param plot_cap Boolean indicating if the capacity should be shown in the
#'  figure, if available.
#'
#' @return A ggplot2 plot.
#'
#' @export
plot_forecast_component <- function(
  m, fcst, name, uncertainty = TRUE, plot_cap = FALSE
) {

  wrapped.name <- paste0("`", name, "`")
  
  lower.name <- paste0(name, '_lower')
  lower.name <- paste0("`", lower.name, "`")

  upper.name <- paste0(name, '_upper')
  upper.name <- paste0("`", upper.name, "`")

  gg.comp <- ggplot2::ggplot(
      fcst, ggplot2::aes_string(x = 'ds', y = wrapped.name, group = 1)) +
    ggplot2::geom_line(color = "#0072B2", na.rm = TRUE)
  if (exists('cap', where = fcst) && plot_cap) {
    gg.comp <- gg.comp + ggplot2::geom_line(
      ggplot2::aes(y = cap), linetype = 'dashed', na.rm = TRUE)
  }
  if (exists('floor', where = fcst) && plot_cap) {
    gg.comp <- gg.comp + ggplot2::geom_line(
      ggplot2::aes(y = floor), linetype = 'dashed', na.rm = TRUE)
  }
  if (uncertainty && m$uncertainty.samples) {
    gg.comp <- gg.comp +
      ggplot2::geom_ribbon(
        ggplot2::aes_string(
          ymin = lower.name, ymax = upper.name
        ),
        alpha = 0.2,
        fill = "#0072B2",
        na.rm = TRUE)
  }
  if (name %in% m$component.modes$multiplicative) {
    gg.comp <- gg.comp + ggplot2::scale_y_continuous(labels = scales::percent)
  }
  return(gg.comp)
}

#' Prepare dataframe for plotting seasonal components.
#'
#' @param m Prophet object.
#' @param ds Array of dates for column ds.
#'
#' @return A dataframe with seasonal components on ds.
#'
#' @keywords internal
seasonality_plot_df <- function(m, ds) {
  df_list <- list(ds = ds, cap = 1, floor = 0)
  for (name in names(m$extra_regressors)) {
    df_list[[name]] <- 0
  }
  # Activate all conditional seasonality columns
  for (name in names(m$seasonalities)) {
    condition.name = m$seasonalities[[name]]$condition.name
    if (!is.null(condition.name)) {
      df_list[[condition.name]] <- TRUE
    }
  }
  df <- as.data.frame(df_list)
  df <- setup_dataframe(m, df)$df
  return(df)
}

#' Plot the weekly component of the forecast.
#'
#' @param m Prophet model object
#' @param uncertainty Optional boolean to plot uncertainty intervals, which will
#'  only be done if m$uncertainty.samples > 0.
#' @param weekly_start Integer specifying the start day of the weekly
#'  seasonality plot. 0 (default) starts the week on Sunday. 1 shifts by 1 day
#'  to Monday, and so on.
#' @param name Name of seasonality component if previously changed
#'  from default 'weekly'.
#'
#' @return A ggplot2 plot.
#'
#' @keywords internal
plot_weekly <- function(m, uncertainty = TRUE, weekly_start = 0,
                        name = 'weekly') {
  # Compute weekly seasonality for a Sun-Sat sequence of dates.
  days <- seq(set_date('2017-01-01'), by='d', length.out=7) + as.difftime(
    weekly_start, units = "days")
  df.w <- seasonality_plot_df(m, days)
  seas <- predict_seasonal_components(m, df.w)
  seas$dow <- factor(weekdays(df.w$ds), levels=weekdays(df.w$ds))

  gg.weekly <- ggplot2::ggplot(
      seas, ggplot2::aes_string(x = 'dow', y = name, group = 1)) +
    ggplot2::geom_line(color = "#0072B2", na.rm = TRUE) +
    ggplot2::labs(x = "Day of week")
  if (uncertainty && m$uncertainty.samples) {
    gg.weekly <- gg.weekly +
      ggplot2::geom_ribbon(ggplot2::aes_string(ymin = paste0(name, '_lower'),
                                               ymax = paste0(name, '_upper')),
                           alpha = 0.2,
                           fill = "#0072B2",
                           na.rm = TRUE)
  }
  if (m$seasonalities[[name]]$mode == 'multiplicative') {
    gg.weekly <- (
      gg.weekly + ggplot2::scale_y_continuous(labels = scales::percent)
    )
  }
  return(gg.weekly)
}

#' Plot the yearly component of the forecast.
#'
#' @param m Prophet model object.
#' @param uncertainty Optional boolean to plot uncertainty intervals, which
#'  will only be done if m$uncertainty.samples > 0.
#' @param yearly_start Integer specifying the start day of the yearly
#'  seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts by 1 day
#'  to Jan 2, and so on.
#' @param name Name of seasonality component if previously changed
#'  from default 'yearly'.
#'
#' @return A ggplot2 plot.
#'
#' @keywords internal
plot_yearly <- function(m, uncertainty = TRUE, yearly_start = 0,
                        name = 'yearly') {
  # Compute yearly seasonality for a Jan 1 - Dec 31 sequence of dates.
  days <- seq(set_date('2017-01-01'), by='d', length.out=365) + as.difftime(
    yearly_start, units = "days")
  df.y <- seasonality_plot_df(m, days)
  seas <- predict_seasonal_components(m, df.y)
  seas$ds <- df.y$ds

  gg.yearly <- ggplot2::ggplot(
      seas, ggplot2::aes_string(x = 'ds', y = name, group = 1)) +
    ggplot2::geom_line(color = "#0072B2", na.rm = TRUE) +
    ggplot2::labs(x = "Day of year") +
    ggplot2::scale_x_datetime(labels = scales::date_format('%B %d'))
  if (uncertainty && m$uncertainty.samples) {
    gg.yearly <- gg.yearly +
      ggplot2::geom_ribbon(ggplot2::aes_string(ymin = paste0(name, '_lower'),
                                               ymax = paste0(name, '_upper')),
                           alpha = 0.2,
                           fill = "#0072B2",
                           na.rm = TRUE)
  }
  if (m$seasonalities[[name]]$mode == 'multiplicative') {
    gg.yearly <- (
      gg.yearly + ggplot2::scale_y_continuous(labels = scales::percent)
    )
  }
  return(gg.yearly)
}

#' Plot a custom seasonal component.
#'
#' @param m Prophet model object.
#' @param name String name of the seasonality.
#' @param uncertainty Optional boolean to plot uncertainty intervals, which
#'  will only be done if m$uncertainty.samples > 0.
#'
#' @return A ggplot2 plot.
#'
#' @keywords internal
plot_seasonality <- function(m, name, uncertainty = TRUE) {
  # Compute seasonality from Jan 1 through a single period.
  start <- set_date('2017-01-01')
  period <- m$seasonalities[[name]]$period
  end <- start + period * 24 * 3600
  plot.points <- 200
  days <- seq(from=start, to=end, length.out=plot.points)
  df.y <- seasonality_plot_df(m, days)
  seas <- predict_seasonal_components(m, df.y)
  seas$ds <- df.y$ds
  gg.s <- ggplot2::ggplot(
      seas, ggplot2::aes_string(x = 'ds', y = name, group = 1)) +
    ggplot2::geom_line(color = "#0072B2", na.rm = TRUE)

  date_breaks <- ggplot2::waiver()
  label <- 'ds'
  if (name == 'weekly') {
    fmt.str <- '%a'
    date_breaks <- '1 day'
    label <- 'Day of Week'
  } else if (name == 'daily') {
    fmt.str <- '%T'
    date_breaks <- '4 hours'
    label <- 'Hour of day'
  } else if (period <= 2) {
    fmt.str <- '%T'
    label <- 'Hours'
  } else if (period < 14) {
    fmt.str <- '%m/%d %R'
  } else {
    fmt.str <- '%m/%d'
  }
  gg.s <- gg.s +
    ggplot2::scale_x_datetime(
      labels = scales::date_format(fmt.str), date_breaks = date_breaks
    ) +
    ggplot2::xlab(label)
  if (uncertainty && m$uncertainty.samples) {
    gg.s <- gg.s +
    ggplot2::geom_ribbon(
      ggplot2::aes_string(
        ymin = paste0(name, '_lower'), ymax = paste0(name, '_upper')
      ),
      alpha = 0.2,
      fill = "#0072B2",
      na.rm = TRUE)
  }
  if (m$seasonalities[[name]]$mode == 'multiplicative') {
    gg.s <- gg.s + ggplot2::scale_y_continuous(labels = scales::percent)
  }
  return(gg.s)
}

#' Get layers to overlay significant changepoints on prophet forecast plot.
#'
#' @param m Prophet model object.
#' @param threshold Numeric, changepoints where abs(delta) >= threshold are
#'  significant. (Default 0.01)
#' @param cp_color Character, line color. (Default "red")
#' @param cp_linetype Character or integer, line type. (Default "dashed")
#' @param trend Logical, if FALSE, do not draw trend line. (Default TRUE)
#' @param ... Other arguments passed on to layers.
#'
#' @return A list of ggplot2 layers.
#'
#' @examples
#' \dontrun{
#' plot(m, fcst) + add_changepoints_to_plot(m)
#' }
#'
#' @export
add_changepoints_to_plot <- function(m, threshold = 0.01, cp_color = "red",
                               cp_linetype = "dashed", trend = TRUE, ...) {
  layers <- list()
  if (trend) {
    trend_layer <- ggplot2::geom_line(
      ggplot2::aes_string("ds", "trend"), color = cp_color, ...)
    layers <- append(layers, trend_layer)
  }
  signif_changepoints <- m$changepoints[abs(m$params$delta) >= threshold]
  cp_layer <- ggplot2::geom_vline(
    xintercept = as.integer(signif_changepoints), color = cp_color,
    linetype = cp_linetype, ...)
  layers <- append(layers, cp_layer)
  return(layers)
}

#' Plot the prophet forecast.
#'
#' @param x Prophet object.
#' @param fcst Data frame returned by predict(m, df).
#' @param uncertainty Optional boolean indicating if the uncertainty interval for yhat
#'  should be plotted, which will only be done if x$uncertainty.samples > 0. Must be
#'  present in fcst as yhat_lower and yhat_upper.
#' @param ... additional arguments passed to dygraph::dygraph
#' @importFrom dplyr "%>%"
#' @return A dygraph plot.
#'
#' @examples
#' \dontrun{
#' history <- data.frame(
#'  ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
#'  y = sin(1:366/200) + rnorm(366)/10)
#' m <- prophet(history)
#' future <- make_future_dataframe(m, periods = 365)
#' forecast <- predict(m, future)
#' dyplot.prophet(m, forecast)
#' }
#'
#' @export
dyplot.prophet <- function(x, fcst, uncertainty=TRUE,
                           ...)
{
  forecast.label='Predicted'
  actual.label='Actual'
  # create data.frame for plotting
  df <- df_for_plotting(x, fcst)

  # build variables to include, or not, the uncertainty data
  if(uncertainty && x$uncertainty.samples && exists("yhat_lower", where = df))
  {
    colsToKeep <- c('y', 'yhat', 'yhat_lower', 'yhat_upper')
    forecastCols <- c('yhat_lower', 'yhat', 'yhat_upper')
  } else
  {
    colsToKeep <- c('y', 'yhat')
    forecastCols <- c('yhat')
  }
  # convert to xts for easier date handling by dygraph
  dfTS <- xts::xts(df %>% dplyr::select_(.dots=colsToKeep), order.by = df$ds)

  # base plot
  dyBase <- dygraphs::dygraph(dfTS, ...)

  presAnnotation <- function(dygraph, x, text) {
    dygraph %>%
      dygraphs::dyAnnotation(x, text, text, attachAtBottom = TRUE)
  }

  dyBase <- dyBase %>%
    # plot actual values
    dygraphs::dySeries(
      'y', label=actual.label, color='black', drawPoints=TRUE, strokeWidth=0
    ) %>%
    # plot forecast and ribbon
    dygraphs::dySeries(forecastCols, label=forecast.label, color='blue') %>%
    # allow zooming
    dygraphs::dyRangeSelector() %>%
    # make unzoom button
    dygraphs::dyUnzoom()
  if (!is.null(x$holidays)) {
    for (i in 1:nrow(x$holidays)) {
      # make a gray line
      dyBase <- dyBase %>% dygraphs::dyEvent(
        x$holidays$ds[i],color = "rgb(200,200,200)", strokePattern = "solid")
      dyBase <- dyBase %>% dygraphs::dyAnnotation(
        x$holidays$ds[i], x$holidays$holiday[i], x$holidays$holiday[i],
        attachAtBottom = TRUE)
    }
  }
  return(dyBase)
}

#' Plot a performance metric vs. forecast horizon from cross validation.

#' Cross validation produces a collection of out-of-sample model predictions
#' that can be compared to actual values, at a range of different horizons
#' (distance from the cutoff). This computes a specified performance metric
#' for each prediction, and aggregated over a rolling window with horizon.
#'
#' This uses fbprophet.diagnostics.performance_metrics to compute the metrics.
#' Valid values of metric are 'mse', 'rmse', 'mae', 'mape', and 'coverage'.
#'
#' rolling_window is the proportion of data included in the rolling window of
#' aggregation. The default value of 0.1 means 10% of data are included in the
#' aggregation for computing the metric.
#'
#' As a concrete example, if metric='mse', then this plot will show the
#' squared error for each cross validation prediction, along with the MSE
#' averaged over rolling windows of 10% of the data.
#'
#' @param df_cv The output from fbprophet.diagnostics.cross_validation.
#' @param metric Metric name, one of 'mse', 'rmse', 'mae', 'mape', 'coverage'.
#' @param rolling_window Proportion of data to use for rolling average of
#'  metric. In [0, 1]. Defaults to 0.1.
#'
#' @return A ggplot2 plot.
#'
#' @export
plot_cross_validation_metric <- function(df_cv, metric, rolling_window=0.1) {
  df_none <- performance_metrics(df_cv, metrics = metric, rolling_window = -1)
  df_h <- performance_metrics(
    df_cv, metrics = metric, rolling_window = rolling_window
  )

  # Better plotting of difftime
  # Target ~10 ticks
  tick_w <- max(as.double(df_none$horizon, units = 'secs')) / 10.
  # Find the largest time resolution that has <1 unit per bin
  dts <- c('days', 'hours', 'mins', 'secs')
  dt_conversions <- c(
    24 * 60 * 60,
    60 * 60,
    60,
    1
  )
  for (i in seq_along(dts)) {
    if (as.difftime(1, units = dts[i]) < as.difftime(tick_w, units = 'secs')) {
      break
    }
  }
  df_none$x_plt <- (
    as.double(df_none$horizon, units = 'secs') / dt_conversions[i]
  )
  df_h$x_plt <- as.double(df_h$horizon, units = 'secs') / dt_conversions[i]

  gg <- (
    ggplot2::ggplot(df_none, ggplot2::aes_string(x = 'x_plt', y = metric)) +
    ggplot2::labs(x = paste0('Horizon (', dts[i], ')'), y = metric) +
    ggplot2::geom_point(color = 'gray') +
    ggplot2::geom_line(
      data = df_h, ggplot2::aes_string(x = 'x_plt', y = metric), color = 'blue'
    ) +
    ggplot2::theme(aspect.ratio = 3 / 5)
  )

  return(gg)
}

Try the prophet package in your browser

Any scripts or data that you put into this service are public.

prophet documentation built on March 30, 2021, 5:05 p.m.