Nothing
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#' Merge history and forecast for plotting.
#'
#' @param m Prophet object.
#' @param fcst Data frame returned by prophet predict.
#'
#' @importFrom dplyr "%>%"
#' @keywords internal
df_for_plotting <- function(m, fcst) {
# Make sure there is no y in fcst
fcst$y <- NULL
df <- m$history %>%
dplyr::select(ds, y) %>%
dplyr::full_join(fcst, by = "ds") %>%
dplyr::arrange(ds)
return(df)
}
#' Plot the prophet forecast.
#'
#' @param x Prophet object.
#' @param fcst Data frame returned by predict(m, df).
#' @param uncertainty Optional boolean indicating if the uncertainty interval for yhat
#' should be plotted, which will only be done if x$uncertainty.samples > 0.
#' Must be present in fcst as yhat_lower and yhat_upper.
#' @param plot_cap Boolean indicating if the capacity should be shown in the
#' figure, if available.
#' @param xlabel Optional label for x-axis
#' @param ylabel Optional label for y-axis
#' @param ... additional arguments
#'
#' @return A ggplot2 plot.
#'
#' @examples
#' \dontrun{
#' history <- data.frame(ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
#' y = sin(1:366/200) + rnorm(366)/10)
#' m <- prophet(history)
#' future <- make_future_dataframe(m, periods = 365)
#' forecast <- predict(m, future)
#' plot(m, forecast)
#' }
#'
#' @export
plot.prophet <- function(x, fcst, uncertainty = TRUE, plot_cap = TRUE,
xlabel = 'ds', ylabel = 'y', ...) {
df <- df_for_plotting(x, fcst)
gg <- ggplot2::ggplot(df, ggplot2::aes(x = ds, y = y)) +
ggplot2::labs(x = xlabel, y = ylabel)
if (exists('cap', where = df) && plot_cap) {
gg <- gg + ggplot2::geom_line(
ggplot2::aes(y = cap), linetype = 'dashed', na.rm = TRUE)
}
if (x$logistic.floor && exists('floor', where = df) && plot_cap) {
gg <- gg + ggplot2::geom_line(
ggplot2::aes(y = floor), linetype = 'dashed', na.rm = TRUE)
}
if (uncertainty && x$uncertainty.samples && exists('yhat_lower', where = df)) {
gg <- gg +
ggplot2::geom_ribbon(ggplot2::aes(ymin = yhat_lower, ymax = yhat_upper),
alpha = 0.2,
fill = "#0072B2",
na.rm = TRUE)
}
gg <- gg +
ggplot2::geom_point(na.rm=TRUE) +
ggplot2::geom_line(ggplot2::aes(y = yhat), color = "#0072B2",
na.rm = TRUE) +
ggplot2::theme(aspect.ratio = 3 / 5)
return(gg)
}
#' Plot the components of a prophet forecast.
#' Prints a ggplot2 with whichever are available of: trend, holidays, weekly
#' seasonality, yearly seasonality, and additive and multiplicative extra
#' regressors.
#'
#' @param m Prophet object.
#' @param fcst Data frame returned by predict(m, df).
#' @param uncertainty Optional boolean indicating if the uncertainty interval should be
#' plotted for the trend, from fcst columns trend_lower and trend_upper.This will
#' only be done if m$uncertainty.samples > 0.
#' @param plot_cap Boolean indicating if the capacity should be shown in the
#' figure, if available.
#' @param weekly_start Integer specifying the start day of the weekly
#' seasonality plot. 0 (default) starts the week on Sunday. 1 shifts by 1 day
#' to Monday, and so on.
#' @param yearly_start Integer specifying the start day of the yearly
#' seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts by 1 day
#' to Jan 2, and so on.
#' @param render_plot Boolean indicating if the plots should be rendered.
#' Set to FALSE if you want the function to only return the list of panels.
#'
#' @return Invisibly return a list containing the plotted ggplot objects
#'
#' @export
#' @importFrom dplyr "%>%"
prophet_plot_components <- function(
m, fcst, uncertainty = TRUE, plot_cap = TRUE, weekly_start = 0,
yearly_start = 0, render_plot = TRUE
) {
dt <- diff(time_diff(m$history$ds, m$start))
min.dt <- min(dt[dt > 0])
# Plot the trend
panels <- list(
plot_forecast_component(m, fcst, 'trend', uncertainty, plot_cap))
# Plot holiday components, if present.
if (!is.null(m$train.holiday.names) && ('holidays' %in% colnames(fcst))) {
panels[[length(panels) + 1]] <- plot_forecast_component(
m, fcst, 'holidays', uncertainty, FALSE)
}
# Plot weekly seasonality, if present
if ("weekly" %in% colnames(fcst)) {
if (min.dt < 1) {
panels[[length(panels) + 1]] <- plot_seasonality(m, 'weekly', uncertainty)
} else {
panels[[length(panels) + 1]] <- plot_weekly(m, uncertainty, weekly_start)
}
}
# Plot yearly seasonality, if present
if ("yearly" %in% colnames(fcst)) {
panels[[length(panels) + 1]] <- plot_yearly(m, uncertainty, yearly_start)
}
# Plot other seasonalities
for (name in sort(names(m$seasonalities))) {
if (!(name %in% c('weekly', 'yearly')) &&
(name %in% colnames(fcst))) {
if (m$seasonalities[[name]]$period == 7) {
panels[[length(panels) + 1]] <- plot_weekly(m, uncertainty,
weekly_start, name)
} else if (m$seasonalities[[name]]$period == 365.25) {
panels[[length(panels) + 1]] <- plot_yearly(m, uncertainty,
yearly_start, name)
} else {
panels[[length(panels) + 1]] <- plot_seasonality(m, name, uncertainty)
}
}
}
# Plot extra regressors
regressors <- list(additive = FALSE, multiplicative = FALSE)
for (name in names(m$extra_regressors)) {
regressors[[m$extra_regressors[[name]]$mode]] <- TRUE
}
for (mode in c('additive', 'multiplicative')) {
if ((regressors[[mode]]) &
(paste0('extra_regressors_', mode) %in% colnames(fcst))
) {
panels[[length(panels) + 1]] <- plot_forecast_component(
m, fcst, paste0('extra_regressors_', mode), uncertainty, FALSE)
}
}
if (render_plot) {
# Make the plot.
grid::grid.newpage()
grid::pushViewport(grid::viewport(layout = grid::grid.layout(length(panels),
1)))
for (i in seq_along(panels)) {
print(panels[[i]], vp = grid::viewport(layout.pos.row = i,
layout.pos.col = 1))
}
}
return(invisible(panels))
}
#' Plot a particular component of the forecast.
#'
#' @param m Prophet model
#' @param fcst Dataframe output of `predict`.
#' @param name String name of the component to plot (column of fcst).
#' @param uncertainty Optional boolean to plot uncertainty intervals, which will
#' only be done if m$uncertainty.samples > 0.
#' @param plot_cap Boolean indicating if the capacity should be shown in the
#' figure, if available.
#'
#' @return A ggplot2 plot.
#'
#' @export
plot_forecast_component <- function(
m, fcst, name, uncertainty = TRUE, plot_cap = FALSE
) {
wrapped.name <- paste0("`", name, "`")
lower.name <- paste0(name, '_lower')
lower.name <- paste0("`", lower.name, "`")
upper.name <- paste0(name, '_upper')
upper.name <- paste0("`", upper.name, "`")
gg.comp <- ggplot2::ggplot(
fcst, ggplot2::aes_string(x = 'ds', y = wrapped.name, group = 1)) +
ggplot2::geom_line(color = "#0072B2", na.rm = TRUE)
if (exists('cap', where = fcst) && plot_cap) {
gg.comp <- gg.comp + ggplot2::geom_line(
ggplot2::aes(y = cap), linetype = 'dashed', na.rm = TRUE)
}
if (exists('floor', where = fcst) && plot_cap) {
gg.comp <- gg.comp + ggplot2::geom_line(
ggplot2::aes(y = floor), linetype = 'dashed', na.rm = TRUE)
}
if (uncertainty && m$uncertainty.samples) {
gg.comp <- gg.comp +
ggplot2::geom_ribbon(
ggplot2::aes_string(
ymin = lower.name, ymax = upper.name
),
alpha = 0.2,
fill = "#0072B2",
na.rm = TRUE)
}
if (name %in% m$component.modes$multiplicative) {
gg.comp <- gg.comp + ggplot2::scale_y_continuous(labels = scales::percent)
}
return(gg.comp)
}
#' Prepare dataframe for plotting seasonal components.
#'
#' @param m Prophet object.
#' @param ds Array of dates for column ds.
#'
#' @return A dataframe with seasonal components on ds.
#'
#' @keywords internal
seasonality_plot_df <- function(m, ds) {
df_list <- list(ds = ds, cap = 1, floor = 0)
for (name in names(m$extra_regressors)) {
df_list[[name]] <- 0
}
# Activate all conditional seasonality columns
for (name in names(m$seasonalities)) {
condition.name = m$seasonalities[[name]]$condition.name
if (!is.null(condition.name)) {
df_list[[condition.name]] <- TRUE
}
}
df <- as.data.frame(df_list)
df <- setup_dataframe(m, df)$df
return(df)
}
#' Plot the weekly component of the forecast.
#'
#' @param m Prophet model object
#' @param uncertainty Optional boolean to plot uncertainty intervals, which will
#' only be done if m$uncertainty.samples > 0.
#' @param weekly_start Integer specifying the start day of the weekly
#' seasonality plot. 0 (default) starts the week on Sunday. 1 shifts by 1 day
#' to Monday, and so on.
#' @param name Name of seasonality component if previously changed
#' from default 'weekly'.
#'
#' @return A ggplot2 plot.
#'
#' @keywords internal
plot_weekly <- function(m, uncertainty = TRUE, weekly_start = 0,
name = 'weekly') {
# Compute weekly seasonality for a Sun-Sat sequence of dates.
days <- seq(set_date('2017-01-01'), by='d', length.out=7) + as.difftime(
weekly_start, units = "days")
df.w <- seasonality_plot_df(m, days)
seas <- predict_seasonal_components(m, df.w)
seas$dow <- factor(weekdays(df.w$ds), levels=weekdays(df.w$ds))
gg.weekly <- ggplot2::ggplot(
seas, ggplot2::aes_string(x = 'dow', y = name, group = 1)) +
ggplot2::geom_line(color = "#0072B2", na.rm = TRUE) +
ggplot2::labs(x = "Day of week")
if (uncertainty && m$uncertainty.samples) {
gg.weekly <- gg.weekly +
ggplot2::geom_ribbon(ggplot2::aes_string(ymin = paste0(name, '_lower'),
ymax = paste0(name, '_upper')),
alpha = 0.2,
fill = "#0072B2",
na.rm = TRUE)
}
if (m$seasonalities[[name]]$mode == 'multiplicative') {
gg.weekly <- (
gg.weekly + ggplot2::scale_y_continuous(labels = scales::percent)
)
}
return(gg.weekly)
}
#' Plot the yearly component of the forecast.
#'
#' @param m Prophet model object.
#' @param uncertainty Optional boolean to plot uncertainty intervals, which
#' will only be done if m$uncertainty.samples > 0.
#' @param yearly_start Integer specifying the start day of the yearly
#' seasonality plot. 0 (default) starts the year on Jan 1. 1 shifts by 1 day
#' to Jan 2, and so on.
#' @param name Name of seasonality component if previously changed
#' from default 'yearly'.
#'
#' @return A ggplot2 plot.
#'
#' @keywords internal
plot_yearly <- function(m, uncertainty = TRUE, yearly_start = 0,
name = 'yearly') {
# Compute yearly seasonality for a Jan 1 - Dec 31 sequence of dates.
days <- seq(set_date('2017-01-01'), by='d', length.out=365) + as.difftime(
yearly_start, units = "days")
df.y <- seasonality_plot_df(m, days)
seas <- predict_seasonal_components(m, df.y)
seas$ds <- df.y$ds
gg.yearly <- ggplot2::ggplot(
seas, ggplot2::aes_string(x = 'ds', y = name, group = 1)) +
ggplot2::geom_line(color = "#0072B2", na.rm = TRUE) +
ggplot2::labs(x = "Day of year") +
ggplot2::scale_x_datetime(labels = scales::date_format('%B %d'))
if (uncertainty && m$uncertainty.samples) {
gg.yearly <- gg.yearly +
ggplot2::geom_ribbon(ggplot2::aes_string(ymin = paste0(name, '_lower'),
ymax = paste0(name, '_upper')),
alpha = 0.2,
fill = "#0072B2",
na.rm = TRUE)
}
if (m$seasonalities[[name]]$mode == 'multiplicative') {
gg.yearly <- (
gg.yearly + ggplot2::scale_y_continuous(labels = scales::percent)
)
}
return(gg.yearly)
}
#' Plot a custom seasonal component.
#'
#' @param m Prophet model object.
#' @param name String name of the seasonality.
#' @param uncertainty Optional boolean to plot uncertainty intervals, which
#' will only be done if m$uncertainty.samples > 0.
#'
#' @return A ggplot2 plot.
#'
#' @keywords internal
plot_seasonality <- function(m, name, uncertainty = TRUE) {
# Compute seasonality from Jan 1 through a single period.
start <- set_date('2017-01-01')
period <- m$seasonalities[[name]]$period
end <- start + period * 24 * 3600
plot.points <- 200
days <- seq(from=start, to=end, length.out=plot.points)
df.y <- seasonality_plot_df(m, days)
seas <- predict_seasonal_components(m, df.y)
seas$ds <- df.y$ds
gg.s <- ggplot2::ggplot(
seas, ggplot2::aes_string(x = 'ds', y = name, group = 1)) +
ggplot2::geom_line(color = "#0072B2", na.rm = TRUE)
date_breaks <- ggplot2::waiver()
label <- 'ds'
if (name == 'weekly') {
fmt.str <- '%a'
date_breaks <- '1 day'
label <- 'Day of Week'
} else if (name == 'daily') {
fmt.str <- '%T'
date_breaks <- '4 hours'
label <- 'Hour of day'
} else if (period <= 2) {
fmt.str <- '%T'
label <- 'Hours'
} else if (period < 14) {
fmt.str <- '%m/%d %R'
} else {
fmt.str <- '%m/%d'
}
gg.s <- gg.s +
ggplot2::scale_x_datetime(
labels = scales::date_format(fmt.str), date_breaks = date_breaks
) +
ggplot2::xlab(label)
if (uncertainty && m$uncertainty.samples) {
gg.s <- gg.s +
ggplot2::geom_ribbon(
ggplot2::aes_string(
ymin = paste0(name, '_lower'), ymax = paste0(name, '_upper')
),
alpha = 0.2,
fill = "#0072B2",
na.rm = TRUE)
}
if (m$seasonalities[[name]]$mode == 'multiplicative') {
gg.s <- gg.s + ggplot2::scale_y_continuous(labels = scales::percent)
}
return(gg.s)
}
#' Get layers to overlay significant changepoints on prophet forecast plot.
#'
#' @param m Prophet model object.
#' @param threshold Numeric, changepoints where abs(delta) >= threshold are
#' significant. (Default 0.01)
#' @param cp_color Character, line color. (Default "red")
#' @param cp_linetype Character or integer, line type. (Default "dashed")
#' @param trend Logical, if FALSE, do not draw trend line. (Default TRUE)
#' @param ... Other arguments passed on to layers.
#'
#' @return A list of ggplot2 layers.
#'
#' @examples
#' \dontrun{
#' plot(m, fcst) + add_changepoints_to_plot(m)
#' }
#'
#' @export
add_changepoints_to_plot <- function(m, threshold = 0.01, cp_color = "red",
cp_linetype = "dashed", trend = TRUE, ...) {
layers <- list()
if (trend) {
trend_layer <- ggplot2::geom_line(
ggplot2::aes_string("ds", "trend"), color = cp_color, ...)
layers <- append(layers, trend_layer)
}
signif_changepoints <- m$changepoints[abs(m$params$delta) >= threshold]
cp_layer <- ggplot2::geom_vline(
xintercept = as.integer(signif_changepoints), color = cp_color,
linetype = cp_linetype, ...)
layers <- append(layers, cp_layer)
return(layers)
}
#' Plot the prophet forecast.
#'
#' @param x Prophet object.
#' @param fcst Data frame returned by predict(m, df).
#' @param uncertainty Optional boolean indicating if the uncertainty interval for yhat
#' should be plotted, which will only be done if x$uncertainty.samples > 0. Must be
#' present in fcst as yhat_lower and yhat_upper.
#' @param ... additional arguments passed to dygraph::dygraph
#' @importFrom dplyr "%>%"
#' @return A dygraph plot.
#'
#' @examples
#' \dontrun{
#' history <- data.frame(
#' ds = seq(as.Date('2015-01-01'), as.Date('2016-01-01'), by = 'd'),
#' y = sin(1:366/200) + rnorm(366)/10)
#' m <- prophet(history)
#' future <- make_future_dataframe(m, periods = 365)
#' forecast <- predict(m, future)
#' dyplot.prophet(m, forecast)
#' }
#'
#' @export
dyplot.prophet <- function(x, fcst, uncertainty=TRUE,
...)
{
forecast.label='Predicted'
actual.label='Actual'
# create data.frame for plotting
df <- df_for_plotting(x, fcst)
# build variables to include, or not, the uncertainty data
if(uncertainty && x$uncertainty.samples && exists("yhat_lower", where = df))
{
colsToKeep <- c('y', 'yhat', 'yhat_lower', 'yhat_upper')
forecastCols <- c('yhat_lower', 'yhat', 'yhat_upper')
} else
{
colsToKeep <- c('y', 'yhat')
forecastCols <- c('yhat')
}
# convert to xts for easier date handling by dygraph
dfTS <- xts::xts(df %>% dplyr::select_(.dots=colsToKeep), order.by = df$ds)
# base plot
dyBase <- dygraphs::dygraph(dfTS, ...)
presAnnotation <- function(dygraph, x, text) {
dygraph %>%
dygraphs::dyAnnotation(x, text, text, attachAtBottom = TRUE)
}
dyBase <- dyBase %>%
# plot actual values
dygraphs::dySeries(
'y', label=actual.label, color='black', drawPoints=TRUE, strokeWidth=0
) %>%
# plot forecast and ribbon
dygraphs::dySeries(forecastCols, label=forecast.label, color='blue') %>%
# allow zooming
dygraphs::dyRangeSelector() %>%
# make unzoom button
dygraphs::dyUnzoom()
if (!is.null(x$holidays)) {
for (i in 1:nrow(x$holidays)) {
# make a gray line
dyBase <- dyBase %>% dygraphs::dyEvent(
x$holidays$ds[i],color = "rgb(200,200,200)", strokePattern = "solid")
dyBase <- dyBase %>% dygraphs::dyAnnotation(
x$holidays$ds[i], x$holidays$holiday[i], x$holidays$holiday[i],
attachAtBottom = TRUE)
}
}
return(dyBase)
}
#' Plot a performance metric vs. forecast horizon from cross validation.
#' Cross validation produces a collection of out-of-sample model predictions
#' that can be compared to actual values, at a range of different horizons
#' (distance from the cutoff). This computes a specified performance metric
#' for each prediction, and aggregated over a rolling window with horizon.
#'
#' This uses fbprophet.diagnostics.performance_metrics to compute the metrics.
#' Valid values of metric are 'mse', 'rmse', 'mae', 'mape', and 'coverage'.
#'
#' rolling_window is the proportion of data included in the rolling window of
#' aggregation. The default value of 0.1 means 10% of data are included in the
#' aggregation for computing the metric.
#'
#' As a concrete example, if metric='mse', then this plot will show the
#' squared error for each cross validation prediction, along with the MSE
#' averaged over rolling windows of 10% of the data.
#'
#' @param df_cv The output from fbprophet.diagnostics.cross_validation.
#' @param metric Metric name, one of 'mse', 'rmse', 'mae', 'mape', 'coverage'.
#' @param rolling_window Proportion of data to use for rolling average of
#' metric. In [0, 1]. Defaults to 0.1.
#'
#' @return A ggplot2 plot.
#'
#' @export
plot_cross_validation_metric <- function(df_cv, metric, rolling_window=0.1) {
df_none <- performance_metrics(df_cv, metrics = metric, rolling_window = -1)
df_h <- performance_metrics(
df_cv, metrics = metric, rolling_window = rolling_window
)
# Better plotting of difftime
# Target ~10 ticks
tick_w <- max(as.double(df_none$horizon, units = 'secs')) / 10.
# Find the largest time resolution that has <1 unit per bin
dts <- c('days', 'hours', 'mins', 'secs')
dt_conversions <- c(
24 * 60 * 60,
60 * 60,
60,
1
)
for (i in seq_along(dts)) {
if (as.difftime(1, units = dts[i]) < as.difftime(tick_w, units = 'secs')) {
break
}
}
df_none$x_plt <- (
as.double(df_none$horizon, units = 'secs') / dt_conversions[i]
)
df_h$x_plt <- as.double(df_h$horizon, units = 'secs') / dt_conversions[i]
gg <- (
ggplot2::ggplot(df_none, ggplot2::aes_string(x = 'x_plt', y = metric)) +
ggplot2::labs(x = paste0('Horizon (', dts[i], ')'), y = metric) +
ggplot2::geom_point(color = 'gray') +
ggplot2::geom_line(
data = df_h, ggplot2::aes_string(x = 'x_plt', y = metric), color = 'blue'
) +
ggplot2::theme(aspect.ratio = 3 / 5)
)
return(gg)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.