Description Usage Arguments Details Value References See Also Examples

View source: R/111.ConfidenceIntervals_ADJ_n.R

Adjusted ArcSine method of CI estimation

1 | ```
ciAAS(n, alp, h)
``` |

`n` |
- Number of trials |

`alp` |
- Alpha value (significance level required) |

`h` |
- adding factor |

Wald-type interval for the arcsine transformation of the parameter
`p`

for the modified data *x + h* and *n + (2*h)* , where
*h > 0* and for all *x = 0, 1, 2 ..n.*

A dataframe with

`x` |
Number of successes (positive samples) |

`LAAS ` |
Adjusted ArcSine Lower limit |

`UAAS ` |
Adjusted ArcSine Upper Limit |

`LABB ` |
Adjusted ArcSine Lower Abberation |

`UABB ` |
Adjusted ArcSine Upper Abberation |

`ZWI ` |
Zero Width Interval |

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

`prop.test and binom.test`

for equivalent base Stats R functionality,
`binom.confint`

provides similar functionality for 11 methods,
`wald2ci`

which provides multiple functions for CI calculation ,
`binom.blaker.limits`

which calculates Blaker CI which is not covered here and
`propCI`

which provides similar functionality.

Other Adjusted methods of CI estimation: `PlotciAAS`

,
`PlotciAAllg`

, `PlotciAAll`

,
`PlotciALR`

, `PlotciALT`

,
`PlotciASC`

, `PlotciATW`

,
`PlotciAWD`

, `ciAAll`

,
`ciALR`

, `ciALT`

,
`ciASC`

, `ciATW`

,
`ciAWD`

1 2 | ```
n=5; alp=0.05;h=2
ciAAS(n,alp,h)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.