ciALTx: Adjusted Logit-Wald method of CI estimation

Description Usage Arguments Details Value References See Also Examples

View source: R/113.ConfidenceIntervals_ADJ_n_x.R

Description

Adjusted Logit-Wald method of CI estimation

Usage

1
ciALTx(x, n, alp, h)

Arguments

x

- Number of successes

n

- Number of trials

alp

- Alpha value (significance level required)

h

- Adding factor

Details

Wald-type interval for the logit transformation log(p/1-p) of the parameter p for the modified data eqnx + h and n + (2*h) , where h > 0 and the given x and n.

Value

A dataframe with

x

Number of successes (positive samples)

LALTx

Logit Wald Lower limit

UALTx

Logit Wald Upper Limit

LABB

Logit Wald Lower Abberation

UABB

Logit Wald Upper Abberation

ZWI

Zero Width Interval

References

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

See Also

prop.test and binom.test for equivalent base Stats R functionality, binom.confint provides similar functionality for 11 methods, wald2ci which provides multiple functions for CI calculation , binom.blaker.limits which calculates Blaker CI which is not covered here and propCI which provides similar functionality.

Other Adjusted methods of CI estimation given x & n: PlotciAAllx, ciAASx, ciAAllx, ciALRx, ciASCx, ciATWx, ciAWDx

Examples

1
2
x=5; n=5; alp=0.05;h=2
ciALTx(x,n,alp,h)

proportion documentation built on May 1, 2019, 7:54 p.m.