# ciAS: ArcSine method of CI estimation In proportion: Inference on Single Binomial Proportion and Bayesian Computations

## Description

ArcSine method of CI estimation

## Usage

 `1` ```ciAS(n, alp) ```

## Arguments

 `n` - Number of trials `alp` - Alpha value (significance level required)

## Details

Wald-type interval for all x = 0, 1, 2 ..n using the arcsine transformation of the parameter p; that is based on the normal approximation for sin-1(p). Calculates the Confidence Interval of `n` given `alp` along with lower and upper abberation.

## Value

A dataframe with

 `x ` - Number of successes (positive samples) `LAS ` - ArcSine Lower limit `UAS ` - ArcSine Upper Limit `LABB ` - ArcSine Lower Abberation `UABB ` - ArcSine Upper Abberation `ZWI ` - Zero Width Interval

## References

[1] 1993 Vollset SE. Confidence intervals for a binomial proportion. Statistics in Medicine: 12; 809 - 824.

[2] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[3] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[4] 2001 Brown LD, Cai TT and DasGupta A. Interval estimation for a binomial proportion. Statistical Science: 16; 101 - 133.

[5] 2002 Pan W. Approximate confidence intervals for one proportion and difference of two proportions Computational Statistics and Data Analysis 40, 128, 143-157.

[6] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

[7] 2014 Martin Andres, A. and Alvarez Hernandez, M. Two-tailed asymptotic inferences for a proportion. Journal of Applied Statistics, 41, 7, 1516-1529

`prop.test and binom.test` for equivalent base Stats R functionality, `binom.confint` provides similar functionality for 11 methods, `wald2ci` which provides multiple functions for CI calculation , `binom.blaker.limits` which calculates Blaker CI which is not covered here and `propCI` which provides similar functionality.

Other Basic methods of CI estimation: `PlotciAS`, `PlotciAllg`, `PlotciAll`, `PlotciBA`, `PlotciEX`, `PlotciLR`, `PlotciLT`, `PlotciSC`, `PlotciTW`, `PlotciWD`, `ciAll`, `ciBA`, `ciEX`, `ciLR`, `ciLT`, `ciSC`, `ciTW`, `ciWD`

## Examples

 ```1 2``` ```n=5; alp=0.05 ciAS(n,alp) ```

proportion documentation built on May 1, 2019, 7:54 p.m.