ciCASx: Continuity corrected ArcSine method of CI estimation

Description Usage Arguments Details Value References See Also Examples

View source: R/123.ConfidenceIntervals_CC_n_x.R

Description

Continuity corrected ArcSine method of CI estimation

Usage

1
ciCASx(x, n, alp, c)

Arguments

x

- Number of successes

n

- Number of trials

alp

- Alpha value (significance level required)

c

- Continuity correction

Details

Wald-type interval for the arcsine transformation using the test statistic (abs(sin^(-1)phat-sin^(-1)p)-c)/SE where c > 0 is a constant for continuity correction and for all x = 0, 1, 2 ..n

Value

A dataframe with

x

Number of successes (positive samples)

LCAx

ArcSine Lower limit

UCAx

ArcSine Upper Limit

LABB

ArcSine Lower Abberation

UABB

ArcSine Upper Abberation

ZWI

Zero Width Interval

References

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

See Also

prop.test and binom.test for equivalent base Stats R functionality, binom.confint provides similar functionality for 11 methods, wald2ci which provides multiple functions for CI calculation , binom.blaker.limits which calculates Blaker CI which is not covered here and propCI which provides similar functionality.

Examples

1
2
x=5; n=5; alp=0.05;c=1/2*n
ciCASx(x,n,alp,c)

proportion documentation built on May 1, 2019, 7:54 p.m.