Description Usage Arguments Details Value References See Also Examples
View source: R/101.Confidence_base_n.R
CI estimation of 6 base methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine)
1 | ciAll(n, alp)
|
n |
- Number of trials |
alp |
- Alpha value (significance level required) |
The Confidence Interval of 6 base methods (Wald, Wald-T, Likelihood, Score, Logit-Wald, ArcSine) for n
given alp
.
A dataframe with
method |
- Name of the method |
x |
- Number of successes (positive samples) |
LLT |
- Lower limit |
ULT |
- Upper Limit |
LABB |
- Lower Abberation |
UABB |
- Upper Abberation |
ZWI |
- Zero Width Interval |
[1] 1993 Vollset SE. Confidence intervals for a binomial proportion. Statistics in Medicine: 12; 809 - 824.
[2] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.
[3] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.
[4] 2001 Brown LD, Cai TT and DasGupta A. Interval estimation for a binomial proportion. Statistical Science: 16; 101 - 133.
[5] 2002 Pan W. Approximate confidence intervals for one proportion and difference of two proportions Computational Statistics and Data Analysis 40, 128, 143-157.
[6] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.
[7] 2014 Martin Andres, A. and Alvarez Hernandez, M. Two-tailed asymptotic inferences for a proportion. Journal of Applied Statistics, 41, 7, 1516-1529
prop.test and binom.test
for equivalent base Stats R functionality,
binom.confint
provides similar functionality for 11 methods,
wald2ci
which provides multiple functions for CI calculation ,
binom.blaker.limits
which calculates Blaker CI which is not covered here and
propCI
which provides similar functionality.
Other Basic methods of CI estimation: PlotciAS
,
PlotciAllg
, PlotciAll
,
PlotciBA
, PlotciEX
,
PlotciLR
, PlotciLT
,
PlotciSC
, PlotciTW
,
PlotciWD
, ciAS
,
ciBA
, ciEX
,
ciLR
, ciLT
,
ciSC
, ciTW
,
ciWD
1 2 | n=5; alp=0.05;
ciAll(n,alp)
|
method x LowerLimit UpperLimit LowerAbb UpperAbb ZWI
1 Wald 0 0.000000e+00 0.0000000 NO NO YES
2 Wald 1 0.000000e+00 0.5506090 YES NO NO
3 Wald 2 0.000000e+00 0.8294066 YES NO NO
4 Wald 3 1.705934e-01 1.0000000 NO YES NO
5 Wald 4 4.493910e-01 1.0000000 NO YES NO
6 Wald 5 1.000000e+00 1.0000000 NO NO YES
7 ArcSine 0 1.800863e-01 0.1800863 NO NO YES
8 ArcSine 1 6.443278e-04 0.6154592 NO NO NO
9 ArcSine 2 5.952159e-02 0.8125129 NO NO NO
10 ArcSine 3 1.874871e-01 0.9404784 NO NO NO
11 ArcSine 4 3.845408e-01 0.9993557 NO NO NO
12 ArcSine 5 8.199137e-01 0.8199137 NO NO NO
13 Likelihood 0 2.525061e-05 0.3189979 NO NO NO
14 Likelihood 1 1.262562e-02 0.6282215 NO NO NO
15 Likelihood 2 8.073487e-02 0.8009072 NO NO NO
16 Likelihood 3 1.990928e-01 0.9192651 NO NO NO
17 Likelihood 4 3.717785e-01 0.9873744 NO NO NO
18 Likelihood 5 6.810021e-01 0.9999591 NO NO NO
19 Score 0 3.139253e-17 0.4344825 NO NO NO
20 Score 1 3.622411e-02 0.6244654 NO NO NO
21 Score 2 1.176208e-01 0.7692757 NO NO NO
22 Score 3 2.307243e-01 0.8823792 NO NO NO
23 Score 4 3.755346e-01 0.9637759 NO NO NO
24 Score 5 5.655175e-01 1.0000000 NO NO NO
25 Wald-T 0 0.000000e+00 0.6640117 YES NO NO
26 Wald-T 1 0.000000e+00 0.6437279 YES NO NO
27 Wald-T 2 0.000000e+00 0.8527525 YES NO NO
28 Wald-T 3 1.472475e-01 1.0000000 NO YES NO
29 Wald-T 4 3.562721e-01 1.0000000 NO YES NO
30 Wald-T 5 3.359883e-01 1.0000000 NO YES NO
31 Logit-Wald 0 0.000000e+00 0.5218238 NO NO NO
32 Logit-Wald 1 2.718309e-02 0.6910456 NO NO NO
33 Logit-Wald 2 1.002311e-01 0.7995892 NO NO NO
34 Logit-Wald 3 2.004108e-01 0.8997689 NO NO NO
35 Logit-Wald 4 3.089544e-01 0.9728169 NO NO NO
36 Logit-Wald 5 4.781762e-01 1.0000000 NO NO NO
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.