Description Usage Arguments Details Value References See Also Examples
View source: R/101.Confidence_base_n.R
Exact method of CI estimation
1 | ciEX(n, alp, e)
|
n |
- Number of trials |
alp |
- Alpha value (significance level required) |
e |
- Exact method indicator in [0, 1] 1: Clopper Pearson, 0.5: Mid P, The input can also be a range of values between 0 and 1. |
Confidence interval for p
(for all x
= 0, 1, 2 ..n
),
based on inverting
equal-tailed binomial tests with null hypothesis
H0: p = p0
and calculated from the cumulative binomial distribution. Exact two sided P-value is usually calculated as
P= 2[e*Pr(X = x) + min{(Pr(X < x), Pr(X > x))}]
where
probabilities are found at null value of p and 0 <= e <= 1.
The Confidence Interval of n
given alp
along with lower and upper abberation.
A dataframe with
x |
- Number of successes (positive samples) |
LEX |
- Exact Lower limit |
UEX |
- Exact Upper Limit |
LABB |
- Likelihood Ratio Lower Abberation |
UABB |
- Likelihood Ratio Upper Abberation |
ZWI |
- Zero Width Interval |
e |
- Exact method input |
[1] 1993 Vollset SE. Confidence intervals for a binomial proportion. Statistics in Medicine: 12; 809 - 824.
[2] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.
[3] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.
[4] 2001 Brown LD, Cai TT and DasGupta A. Interval estimation for a binomial proportion. Statistical Science: 16; 101 - 133.
[5] 2002 Pan W. Approximate confidence intervals for one proportion and difference of two proportions Computational Statistics and Data Analysis 40, 128, 143-157.
[6] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.
[7] 2014 Martin Andres, A. and Alvarez Hernandez, M. Two-tailed asymptotic inferences for a proportion. Journal of Applied Statistics, 41, 7, 1516-1529
prop.test and binom.test
for equivalent base Stats R functionality,
binom.confint
provides similar functionality for 11 methods,
wald2ci
which provides multiple functions for CI calculation ,
binom.blaker.limits
which calculates Blaker CI which is not covered here and
propCI
which provides similar functionality.
Other Basic methods of CI estimation: PlotciAS
,
PlotciAllg
, PlotciAll
,
PlotciBA
, PlotciEX
,
PlotciLR
, PlotciLT
,
PlotciSC
, PlotciTW
,
PlotciWD
, ciAS
,
ciAll
, ciBA
,
ciLR
, ciLT
,
ciSC
, ciTW
,
ciWD
1 2 3 4 5 6 |
x LEX UEX LABB UABB ZWI e
1 0 0.00000000 0.4507197 NO NO NO 0.5
2 1 0.01001220 0.6655550 NO NO NO 0.5
3 2 0.07347783 0.8176210 NO NO NO 0.5
4 3 0.18237899 0.9265222 NO NO NO 0.5
5 4 0.33444505 0.9899878 NO NO NO 0.5
6 5 0.54928027 1.0000000 NO NO NO 0.5
x LEX UEX LABB UABB ZWI e
1 0 0.00000000 0.5218238 NO NO NO 1
2 1 0.00505284 0.7164179 NO NO NO 1
3 2 0.05276146 0.8533694 NO NO NO 1
4 3 0.14663061 0.9472385 NO NO NO 1
5 4 0.28358215 0.9949472 NO NO NO 1
6 5 0.47817625 1.0000000 NO NO NO 1
x LEX UEX LABB UABB ZWI e
1 0 0.000000000 0.2421417 NO NO NO 0.10
2 1 0.033389933 0.5677472 NO NO NO 0.10
3 2 0.121847735 0.7481841 NO NO NO 0.10
4 3 0.251815869 0.8781523 NO NO NO 0.10
5 4 0.432252823 0.9666101 NO NO NO 0.10
6 5 0.757858283 1.0000000 NO NO NO 0.10
7 0 0.000000000 0.4507197 NO NO NO 0.50
8 1 0.010012205 0.6655550 NO NO NO 0.50
9 2 0.073477832 0.8176210 NO NO NO 0.50
10 3 0.182378987 0.9265222 NO NO NO 0.50
11 4 0.334445049 0.9899878 NO NO NO 0.50
12 5 0.549280272 1.0000000 NO NO NO 0.50
13 0 0.000000000 0.5168931 NO NO NO 0.95
14 1 0.005318479 0.7127676 NO NO NO 0.95
15 2 0.054128982 0.8508479 NO NO NO 0.95
16 3 0.149152092 0.9458710 NO NO NO 0.95
17 4 0.287232382 0.9946815 NO NO NO 0.95
18 5 0.483106945 1.0000000 NO NO NO 0.95
19 0 0.000000000 0.5218238 NO NO NO 1.00
20 1 0.005052840 0.7164179 NO NO NO 1.00
21 2 0.052761458 0.8533694 NO NO NO 1.00
22 3 0.146630615 0.9472385 NO NO NO 1.00
23 4 0.283582147 0.9949472 NO NO NO 1.00
24 5 0.478176250 1.0000000 NO NO NO 1.00
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.