Adjusted ArcSine method of CI estimation

Share:

Description

Adjusted ArcSine method of CI estimation

Usage

1
ciAASx(x, n, alp, h)

Arguments

x

- Number of successes

n

- Number of trials

alp

- Alpha value (significance level required)

h

- Adding factor

Details

Wald-type interval for the arcsine transformation of the parameter p for the modified data x + h and n + (2*h) , where h > 0 and for the given x and n.

Value

A dataframe with

x

Number of successes (positive samples)

LAASx

ArcSine Lower limit

UAASx

ArcSine Upper Limit

LABB

ArcSine Lower Abberation

UABB

ArcSine Upper Abberation

ZWI

Zero Width Interval

References

[1] 1998 Agresti A and Coull BA. Approximate is better than "Exact" for interval estimation of binomial proportions. The American Statistician: 52; 119 - 126.

[2] 1998 Newcombe RG. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Statistics in Medicine: 17; 857 - 872.

[3] 2008 Pires, A.M., Amado, C. Interval Estimators for a Binomial Proportion: Comparison of Twenty Methods. REVSTAT - Statistical Journal, 6, 165-197.

See Also

prop.test and binom.test for equivalent base Stats R functionality, binom.confint provides similar functionality for 11 methods, wald2ci which provides multiple functions for CI calculation , binom.blaker.limits which calculates Blaker CI which is not covered here and propCI which provides similar functionality.

Other Adjusted methods of CI estimation given x & n: PlotciAAllx, ciAAllx, ciALRx, ciALTx, ciASCx, ciATWx, ciAWDx

Examples

1
2
x=5; n=5; alp=0.05;h=2
ciAASx(x,n,alp,h)

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.