R/mtmm.R

#' @importFrom grDevices dev.new
#' @importFrom graphics abline
#' @importFrom graphics boxplot
#' @importFrom graphics points
#' @importFrom graphics stripchart
#' @importFrom stats cov
#' @importFrom stats median
#' @importFrom stats optim
#' @importFrom stats reshape
#' @importFrom stats rnorm
#' @importFrom stats sd
#' @export
mtmm <-
  function (datafile, x, color = FALSE, itemTot = FALSE, graphItem = FALSE, stripChart=FALSE, namesDim=NULL)
  {

    ###############################################################################
    #          Graph of Correlation within and between Item of subscale           #
    ###############################################################################
    par.old <- par("mfrow")
    k <- 1
    name <- nam <- c()
    r2 <- c()
    nn <- c()
    nbdim <- length(x)
    X <- list()
    n <- as.data.frame(matrix(nrow = 1, ncol = nbdim))
    datafile <- na.omit(datafile[,unlist(x)])
    for (i in 1:nbdim) {
      X[[i]] <- datafile[, x[[i]]]
    }
    # Names of variables and matrix of correlations
    for (i in 1:nbdim) {
      n[i] <- length(X[[i]])
    }
    nn <- c(nn, n)
    k <- 1
    for (i in 1:nbdim) {
      nameD <- as.data.frame(matrix(nrow = n[[i]], ncol = nbdim))
      nameD[i] <- names(X[[i]])
      for (j in 1:nbdim) {
        r <- as.data.frame(matrix(nrow = n[[i]], ncol = n[[j]]))
        r <- cor(X[i][[1]], X[j][[1]])
        r2[k] <- list(r)
        k <- k + 1
      }
      name <- c(name, nameD[i])
      nam <- c(nam, name[[i]])
    }
    # Separation of both types of matrix
    a <- seq(from = 1, to = length(r2), by = (nbdim + 1))
    X1 <- r2[a]
    X2 <- r2[-a]

    p1 <- length(X1)
    p2 <- length(X2)

    # Correlation of item with its own dimension
    # Initialisation
    correlation <- c()
    dimension <- c()
    mat <- c()
    V1 <- c()
    V2 <- c()

    # Number of item

    k1 <- c()
    for (q in 1:nbdim) {
      w <- seq(from = 1, to = nn[[q]])
      k = 0
      for (i in 1:(nn[[q]] - 1)) {
        k <- w[i] + k
      }
      k1 <- c(k1, k)
    }
    for (l in 1:p1) {
      mat1 <- matrix(ncol = 1, nrow = k1[l])
      mat2 <- matrix(ncol = 1, nrow = k1[l])
      mat3 <- matrix(ncol = 1, nrow = k1[l])
      Var1 <- matrix(ncol = 1, nrow = k1[l])
      Var2 <- matrix(ncol = 1, nrow = k1[l])
      k = 1
      for (i in 1:(nn[[l]] - 1)) {
        for (j in (i + 1):nn[[l]]) {
          mat1[k, 1] <- X1[[l]][j, i]
          mat2[k, 1] <- l
          mat3[k, 1] <- l
          Var1[k, 1] <- attributes(X1[[l]])$dimnames[[1]][i]
          Var2[k, 1] <- attributes(X1[[l]])$dimnames[[1]][j]
          k = k + 1
        }
      }
      correlation <- append(correlation, mat1)
      dimension <- append(dimension, c(mat2))
      mat <- append(mat, c(mat3))
      V1 <- append(V1, c(Var1))
      V2 <- append(V2, c(Var2))
    }

    # Format
    er <- cbind(dimension, mat, V1, V2)
    er <- as.data.frame(er)
    er$correlation <- correlation

    # Correlation of item with other dimensions

    er1 <- c()
    V1 <- c()
    V2 <- c()
    for (l in 1:p2) {
      k <- 1
      mat1 <- matrix(ncol = 1, nrow = ((dim(X2[[l]])[2]) *
                                         (dim(X2[[l]])[1])))
      Var1 <- matrix(ncol = 1, nrow = ((dim(X2[[l]])[2]) *
                                         (dim(X2[[l]])[1])))
      Var2 <- matrix(ncol = 1, nrow = ((dim(X2[[l]])[2]) *
                                         (dim(X2[[l]])[1])))
      for (i in 1:(dim(X2[[l]])[1])) {
        for (j in 1:(dim(X2[[l]])[2])) {
          mat1[k, 1] <- X2[[l]][i, j]
          Var1[k, 1] <- rep(attributes(X2[[l]])$dimnames[[1]][i],
                            each = (dim(X2[[l]])[2]))[j]
          Var2[k, 1] <- attributes(X2[[l]])$dimnames[[2]][j]
          k <- k + 1
        }
      }
      er1 <- append(er1, c(mat1))
      V1 <- append(V1, c(Var1))
      V2 <- append(V2, c(Var2))
    }
    # Format
    err <- cbind(V1, V2)
    err <- as.data.frame(err)
    err$correlation <- er1

    # Names of matrix
    i2 <- c()
    i1 <- c()
    for (k in 1:(nrow(err))) {
      for (l in 1:p1) {
        if (err$V2[k] %in% name[[l]])
          i2[k] <- l
        if (err$V1[k] %in% name[[l]])
          i1[k] <- l
      }
    }
    err$mat <- i2
    err$dimension <- i1

    # grouping of matrix

    corre <- rbind(er, err)

    #****************************************************************************
    #********************************* Colors ***********************************
    #****************************************************************************
    col <- Y <- c()
    for (i in 1:nbdim) {
      if (color == FALSE) {
        col <- rep("white", times = nbdim)
        col[i] <- c("grey")
      }
      else col <- 2:nbdim
      Y[i] <- list(col)
    }
    #****************************************************************************
    #********************************  plots ***********************************
    #****************************************************************************
    if (graphItem == FALSE) {
      if (stripChart==FALSE) {
        for (i in 1:p1) {
          ifelse(is.null(namesDim), maintitle <- paste("Scale", i, sep = " "),
                 maintitle <- paste(i, namesDim[i], sep = " "))
          Dim <- subset(corre, (corre$dimension == i), drop = TRUE)
          boxplot(Dim$correlation ~ Dim$mat, col = Y[[i]],
                  main = maintitle, xlab = "i",
                  ylab = paste("Correlation of Items of Scale i with Items of Scale",
                               i), ylim = c(min(corre$correlation), max(corre$correlation)))
        }
      }
      if (stripChart==TRUE) {
        for (i in 1:p1) {
          ifelse(is.null(namesDim), maintitle <- paste("Scale", i, sep = " "),
                 maintitle <- paste(i, namesDim[i], sep = " "))
          Dim <- subset(corre, (corre$dimension == i), drop = TRUE)
          stripchart(Dim$correlation ~ Dim$mat, vertical=TRUE, method="jitter",
                     jitter=0.05, pch=1, cex=1.5, main = maintitle, xlab = "i",
                     ylab = paste("Correlation of Items of Scale i with Items of Scale",
                                  i), ylim = c(min(corre$correlation), max(corre$correlation)))
          for (j in 1:p1) points(j, median(Dim$correlation[Dim$mat==j]), pch="-", cex=4)
        }
      }
    }
    ###############################################################################
    #          Value of Correlation of Item of Scale with Scale                  #
    ##############################################################################
    n2 <- nrow(X[[1]])
    Score <- matrix(nrow = n2, ncol = nbdim)
    for (i in 1:nbdim) {
      k <- 1
      for (j in 1:n2) {
        Score[k, i] <- sum(X[[i]][j, ])
        k <- k + 1
      }
    }

    # score and correlation
    Scoreaj <- c()
    mat <- c()
    mat2 <- c()
    for (i in 1:nbdim) {
      Scorea <- matrix(nrow = n2, ncol = nn[[i]])
      for (j in 1:(nn[[i]])) {
        for (l in 1:n2) {
          Scorea[l, j] <- Score[l, i] - X[[i]][l, j]
        }
      }
      Scoreaj[i] <- list(Scorea)
      mat <- rep(Score[, i], each = nn[[i]])
      dim(mat) <- c(nn[[i]], n2)
      mat2[i] <- list(t(mat))
    }

    # correlations
    Scale <- ScaleI <- Item <- co <- c <- c()
    t <- 0
    for (i in 1:nbdim) {
      t <- t + as.numeric(nn[i])
      for (j in 1:nbdim) {
        for (k in 1:nn[[i]]) {
          if (i == j) {
            Score <- Scoreaj[[i]][, k]
            c <- c(c, cor(Score, X[[i]][, k]))
            Item <- c(Item, names(X[[i]][k]))
            ScaleI <- c(ScaleI, i)
            Scale <- c(Scale, j)
          }
          else {
            c <- c(c, cor(X[[i]], mat2[[j]][, 1])[k])
            Item <- c(Item, names(X[[i]][k]))
            ScaleI <- c(ScaleI, i)
            Scale <- c(Scale, j)
          }
        }
      }
    }
    co <- c(co, c)
    err <- as.data.frame(cbind(Item, Scale))
    err$ScaleI <- ScaleI
    err$correlation <- co
    tabl <- reshape(err, direction = "wide", timevar = "Scale",
                    idvar = "Item", v.names = c("correlation"))
    for (i in 1:nbdim) {
      colnames(tabl)[i + 2] <- ifelse(is.null(namesDim), paste("Scale", i, sep = " "),
                                      paste(i, namesDim[i], sep = " "))
    }
    if (itemTot == TRUE & graphItem == FALSE) {
      dev.new()
      par(mfrow = par.old)
      if (stripChart==FALSE) {
        for (i in 1:nbdim) {
          ifelse(is.null(namesDim), maintitle <- paste("Scale", i, sep = " "),
                 maintitle <- paste(i, namesDim[i], sep = " "))
          Dim <- subset(err, (err$Scale == i), drop = TRUE)
          boxplot(Dim$correlation ~ Dim$ScaleI, col = Y[[i]],
                  main = maintitle, ylim = c(min(err$correlation),
                                             max(err$correlation)), cex.axis = 0.75, xlab = "i", ylab =
                    paste("Corrected Correlation of Item i with Total Score",i))
        }
      }
      if (stripChart==TRUE) {
        for (i in 1:nbdim) {
          ifelse(is.null(namesDim), maintitle <- paste("Scale", i, sep = " "),
                 maintitle <- paste(i, namesDim[i], sep = " "))
          Dim <- subset(err, (err$Scale == i), drop = TRUE)
          stripchart(Dim$correlation ~ Dim$ScaleI, vertical=TRUE, method="jitter",
                     jitter=0.05, pch=1, cex=1.5, main = maintitle, xlab = "i",
                     ylab = paste("Corrected Correlation of Item i with Total Score",
                                  i), ylim = c(min(err$correlation), max(err$correlation)))
          for (j in 1:nbdim) points(j, median(Dim$correlation[Dim$ScaleI==j]), pch="-", cex=4)
        }
      }
    }
    if (graphItem == TRUE) {
      for (i in 1:nbdim) {
        Dim <- subset(err, (err$Scale == i), drop = TRUE)
        Dim$Item <- factor(Dim$Item, levels = unique(as.character(Dim$Item)))
        with(Dim, stripchart(correlation ~ Item, vertical = TRUE,
                             add = FALSE, main = paste("Score of Scale", i,
                                                       sep = " "), xlab = "Item", ylab = "Correlation",
                             ylim = c(min(corre$correlation), max(corre$correlation)), cex.axis = 1, las = 3,
                             pch = 20, cex = 0.75))
        abline(h = median(Dim$correlation), col = "red")
      }
    }
    return(tabl)
  }

Try the psy package in your browser

Any scripts or data that you put into this service are public.

psy documentation built on April 22, 2022, 1:08 a.m.