inst/doc/scenarios.R

## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  eval = identical(tolower(Sys.getenv("NOT_CRAN")), "true"),
  out.width = "100%"
)


## ----message=FALSE------------------------------------------------------------
# increase Java memory
options(java.parameters = "-Xmx2G")

# load libraries
library(r5r)
library(dplyr)
library(data.table)
library(ggplot2)

# data path
data_path <- system.file("extdata/poa", package = "r5r")

# build network
r5r_network <- r5r::build_network(
  data_path = data_path,
  verbose = FALSE
  )

## ----message=FALSE------------------------------------------------------------
# read data.frame with new car speeds
edge_speed_factors <- read.csv(
  file.path(data_path, "poa_osm_congestion.csv")
  )

head(edge_speed_factors)

## ----message=FALSE------------------------------------------------------------
# origins and destination points
points <- read.csv(file.path(data_path, "poa_points_of_interest.csv"))

# travel time matrix
ttm_congestion <- r5r::travel_time_matrix(
  r5r_network = r5r_network,
  origins = points,
  destinations = points,
  mode = 'car',
  departure_datetime = Sys.time(),
  max_trip_duration = 30,
  new_carspeeds = edge_speed_factors,
  carspeed_scale = 0.8
)

## ----message=FALSE------------------------------------------------------------
# path to OSM pbf
pbf_path <- paste0(data_path, "/poa_osm.pbf")
  
# read layer of lines from pbf
roads <- sf::st_read(
  pbf_path, 
  layer = 'lines', 
  quiet = TRUE
  )

# Filter only road types of interest
rt <- c("motorway", "primary", "secondary", "tertiary") 

roads <- roads |>
  select(osm_id, highway) |>
  filter(highway %in% rt)

head(roads)

## -----------------------------------------------------------------------------
# map
plot(roads["highway"])


## -----------------------------------------------------------------------------
new_edge_speeds <- roads |>
  mutate( 
    osm_id = as.numeric(osm_id),
    max_speed = case_when(
      highway == "motorway"  ~ 0.75,
      highway == "primary"   ~ 0.8,
      highway == "secondary" ~ 0.85,
      highway == "tertiary"  ~ 0.9)) |>
  sf::st_drop_geometry()

new_edge_speeds$speed_type <- "scale"

head(new_edge_speeds)


## ----message = FALSE, warning=FALSE-------------------------------------------
# travel time matrix
ttm_congestion <- r5r::travel_time_matrix(
  r5r_network = r5r_network,
  origins = points,
  destinations = points,
  mode = 'car',
  departure_datetime = Sys.time(),
  max_trip_duration = 30,
  new_carspeeds = new_edge_speeds
  )


## ----message = FALSE----------------------------------------------------------
# edit table with custom speeds to 40 km/h
new_edge_speeds40 <- new_edge_speeds |>
  mutate(max_speed = 40,
         speed_type = "km/h")
  
# travel time matrix
ttm_congestion <- r5r::travel_time_matrix(
  r5r_network = r5r_network,
  origins = points,
  destinations = points,
  mode = 'car',
  departure_datetime = Sys.time(),
  max_trip_duration = 30,
  new_carspeeds = new_edge_speeds40
  )

## ----message = FALSE----------------------------------------------------------
# read sf with congestion polygons
congestion_poly <- readRDS(file.path(data_path, "poa_poly_congestion.rds"))

# preview
mapview::mapview(congestion_poly, zcol="scale")

## ----message = FALSE----------------------------------------------------------
head(congestion_poly)

## ----message = FALSE----------------------------------------------------------
ttm_congestion <- r5r::travel_time_matrix(
  r5r_network = r5r_network,
  origins = points,
  destinations = points,
  mode = 'car',
  departure_datetime = Sys.time(),
  max_trip_duration = 30,
  new_carspeeds = congestion_poly,
  carspeed_scale = 0.95
  )

## ----message=FALSE------------------------------------------------------------
# read data.frame with new lts
edge_lts <- read.csv(
  file.path(data_path, "poa_osm_lts.csv")
  )

head(edge_lts)

## ----message = FALSE----------------------------------------------------------
ttm_new_lts <- r5r::travel_time_matrix(
  r5r_network = r5r_network,
  origins = points,
  destinations = points,
  mode = 'bicycle',
  departure_datetime = Sys.time(),
  max_trip_duration = 30,
  new_lts = edge_lts
  )

## ----message = FALSE----------------------------------------------------------
# read sf with congestion polygons
lts_lines <- readRDS(file.path(data_path, "poa_ls_lts.rds"))

# preview
mapview::mapview(lts_lines, zcol="lts")

## ----message = FALSE----------------------------------------------------------
ttm_new_lts <- r5r::travel_time_matrix(
  r5r_network = r5r_network,
  origins = points,
  destinations = points,
  mode = 'bicycle',
  departure_datetime = Sys.time(),
  max_trip_duration = 30,
  new_lts = lts_lines
  )

## ----message = FALSE----------------------------------------------------------
# stop an specific r5r network
r5r::stop_r5(r5r_network)

# or stop all r5r networks at once
r5r::stop_r5()
rJava::.jgc(R.gc = TRUE)

Try the r5r package in your browser

Any scripts or data that you put into this service are public.

r5r documentation built on Aug. 21, 2025, 5:44 p.m.