Nothing
areaChangeStarter <- function(x, db, grpBy_quo = NULL, polys = NULL,
returnSpatial = FALSE, byLandType = FALSE,
landType = 'forest',
method = 'TI', lambda = 0.5, treeDomain = NULL,
areaDomain = NULL, byPlot = FALSE,
condList = FALSE, chngType = 'net', nCores = 1,
remote, mr) {
# Read required data, prep the database -------------------------------------
reqTables <- c('PLOT', 'TREE', 'COND', 'SUBP_COND_CHNG_MTRX',
'POP_PLOT_STRATUM_ASSGN',
'POP_ESTN_UNIT', 'POP_EVAL',
'POP_STRATUM', 'POP_EVAL_TYP', 'POP_EVAL_GRP', 'PLOTGEOM')
# If remote, read in state by state. Otherwise, drop all unnecessary tables.
db <- readRemoteHelper(x, db, remote, reqTables, nCores)
# Handle TX issues: we only keep inventory years that are present in
# BOTH EAST AND WEST TX
db <- handleTX(db)
# Check some of the inputs ----------------------------------------------
# polys -----------------------------
if (!is.null(polys) &
dplyr::first(class(polys)) %in%
c('sf', 'SpatialPolygons', 'SpatialPolygonsDataFame') == FALSE) {
stop("polys must be a spatial polygons object of class sp or sf.")
}
# landType --------------------------
if (landType %in% c('timber', 'forest', 'water', 'non-forest', 'all') == FALSE) {
stop('landType must be one of: "forest", "timber", "non-forest", "water" or "all".')
}
# treeType --------------------------
if (chngType %in% c('net', 'component') == FALSE) {
stop('chngType must be one of: "net", "component".')
}
# db required tables ----------------
if (any(reqTables %in% names(db) == FALSE)) {
missT <- reqTables[reqTables %in% names(db) == FALSE]
stop(paste('Tables', paste(as.character(missT), collapse = ', '),
'not found in object db.'))
}
# method ----------------------------
if (stringr::str_to_upper(method) %in% c('TI', 'SMA', 'LMA', 'EMA',
'ANNUAL') == FALSE) {
warning(paste('Method', method, 'unknown. Defaulting to Temporally Indifferent (TI).'))
}
# Other basic variable prep ---------------------------------------------
# Join PLOT with PLOTGEOM to allow plot-level geographic attributes to be used
# in grpBy statements
# First need to get rid of other columns in PLOT in PLOTGEOM.
db$PLOTGEOM <- db$PLOTGEOM %>%
dplyr::select(-STATECD, -INVYR, -UNITCD, -COUNTYCD, -PLOT, -LAT, -LON,
-dplyr::starts_with('CREATED'), -dplyr::starts_with('MODIFIED'))
db$PLOT <- db$PLOT %>%
dplyr::left_join(db$PLOTGEOM, by = 'CN')
# Get a plot CN and a new pltID that gives a unique ID to each plot
# PLT_CN is UNITCD, STATECD, COUNTYCD, PLOT, and INVYR
db$PLOT <- db$PLOT %>%
dplyr::mutate(PLT_CN = CN,
pltID = stringr::str_c(UNITCD, STATECD, COUNTYCD, PLOT, sep = '_'))
# Convert grpBy to character
grpBy <- grpByToChar(db, grpBy_quo)
# Unique plot ID through time (pltID)
if (byPlot | condList) {
grpBy <- c('pltID', grpBy)
}
# Intersect plots with polygons if polygons are given
if (!is.null(polys)) {
# Add shapefile names to grpBy
# Determine the name of the sf column. This assumes the user has not
# manually changed the "sf_column" attribute. By default, this is the
# same as the sf column. This is needed, because there is no single
# name for the sf column. It is usually geom or geometry, but that
# is not always the case.
sfCol <- attr(polys, 'sf_column')
grpBy <- c(grpBy, names(polys)[names(polys) != sfCol])
# Do the intersection
db <- arealSumPrep2(db, grpBy, polys, nCores, remote)
# If there's nothing there, skip the state
if (is.null(db)) return('no plots in polys')
}
# Update grpBy if returning spatial points.
if (byPlot & returnSpatial) {
grpBy <- c(grpBy, 'LON', 'LAT')
}
# Build a domain indicator for each observation (1 or 0) ----------------
# Land type
db$COND$landD <- landTypeDomain(landType, db$COND$COND_STATUS_CD,
db$COND$SITECLCD, db$COND$RESERVCD)
# Spatial boundary (determine which of the plots fall within the polygons
# supplied in polys)
if (!is.null(polys)) {
db$PLOT$sp <- ifelse(!is.na(db$PLOT$polyID), 1, 0)
} else {
# If no polys, use all plots.
db$PLOT$sp <- 1
}
# User defined domain indicator for area (ex. specific forest type)
db <- udAreaDomain(db, areaDomain)
# User defined domain indicator for trees (ex. trees > 20 ft tall)
db <- udTreeDomain(db, treeDomain)
# Handle population tables ----------------------------------------------
# Filtering out all inventories that are not relevant to the current
# estimation type. If using estimator other than TI, handle the differences in
# P2POINTCNT and in assigning YEAR column (YEAR = END_INVYR if method = 'TI')
pops <- handlePops(db, evalType = c('CHNG'), method, mr)
# A lot of states do their stratification in such a way that makes it impossible
# to estimate variance of annual panels with the post-stratified estimator. That is,
# the number of plots within a panel within a stratum is less than 2. When this happens
# merge strata so that all have at least two observations.
if (stringr::str_to_upper(method) %in% c('SMA', 'LMA', 'EMA', 'ANNUAL') & !byPlot) {
pops <- mergeSmallStrata(db, pops)
}
# Handle canned groups --------------------------------------------------
# Make a new column that describes the land type and hold in COND
if (byLandType) {
grpBy <- c(grpBy, 'landType')
db$COND <- db$COND %>%
dplyr::mutate(landType = dplyr::case_when(
COND_STATUS_CD == 1 & SITECLCD %in% c(1:6) & RESERVCD == 0 ~ 'Timber',
COND_STATUS_CD == 1 ~ 'Non-Timber Forest',
COND_STATUS_CD == 2 ~ 'Non-Forest',
COND_STATUS_CD == 3 | COND_STATUS_CD == 4 ~ 'Water'),
landD = 1) # Reset the land basis to all
db$COND <- db$COND[!is.na(db$COND$landType),]
}
# Prep the database before heading to estimators ------------------------
# Narrow the tables to the necessary variables.
# Which grpByNames are in which table? Helps us subset below.
# grpBy names in PLOT
grpP <- names(db$PLOT)[names(db$PLOT) %in% grpBy]
# grpBy names in COND
grpC <- names(db$COND)[names(db$COND) %in% grpBy &
!c(names(db$COND) %in% grpP)]
# grpBy names in TREE
grpT <- names(db$TREE)[names(db$TREE) %in% grpBy &
!c(names(db$TREE) %in% c(grpP, grpC))]
# Only the necessary plots for EVAL of interest
# We want the plots in the inventory and their previous measurements
keepThese <- distinct(pops, PLT_CN) %>%
left_join(select(db$PLOT, PLT_CN, PREV_PLT_CN), by = 'PLT_CN')
# PLOT ------------------------------
db$PLOT <- db$PLOT %>%
dplyr::select(c(PLT_CN, STATECD, MACRO_BREAKPOINT_DIA,
INVYR, MEASYEAR, PLOT_STATUS_CD,
dplyr::all_of(grpP), sp, COUNTYCD,
PREV_PLT_CN, REMPER)) %>%
# Drop plots outside of area of interest. Note this differs from other
# functions, where there is also a filter on PLOT_STATUS_CD == 1, but
# here we want plots that were forested and non-forested for
# diversion and reversion.
dplyr::filter(sp == 1) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% !!c(keepThese$PLT_CN, keepThese$PREV_PLT_CN))
# COND ------------------------------
db$COND <- db$COND %>%
dplyr::select(c(PLT_CN, CONDPROP_UNADJ, PROP_BASIS,
COND_STATUS_CD, CONDID,
dplyr::all_of(grpC), aD, landD)) %>%
# Note the below is commented out because need to keep all conditions
# since conditions can change from one time point to the next.
# Drop non-forested plots, and those otherwise outside our domain of interest
# dplyr::filter(aD == 1 & landD == 1) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
# TREE ------------------------------
db$TREE <- db$TREE %>%
dplyr::select(PLT_CN, CONDID, DIA, SPCD, TPA_UNADJ, SUBP, TREE,
dplyr::all_of(grpT), tD) %>%
# Hold onto all trees for now, otherwise things get messed up later on.
# dplyr::filter(!is.na(DIA) & TPA_UNADJ > 0 & tD == 1) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
# Was treeDomain NULL? If so, replace NAs with 1
treeD <- ifelse(mean(db$TREE$tD, na.rm = TRUE) == 1, 1, 0)
# SUBP_COND_CHNG_MTRX ---------------
db$SUBP_COND_CHNG_MTRX <- dplyr::select(db$SUBP_COND_CHNG_MTRX,
c(PLT_CN, SUBP, CONDID, PREVCOND,
SUBPTYP, SUBPTYP_PROP_CHNG)) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
# Determine current and previous groups
grp1 <- if (length(grpBy) > 0 ) { paste0(grpBy, '1') } else { character(0) }
grp2 <- if (length(grpBy) > 0 ) { paste0(grpBy, '2') } else { character(0) }
grp1Syms <- dplyr::syms(grp1)
grp2Syms <- dplyr::syms(grp2)
# Was treeDomain NULL? If so, replace NAs w/ 1 below
# This will be used later, to prevent drops of non-treed forestland in
# component change
db$TREE <- db$TREE %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(PLT_CN, CONDID) %>%
dplyr::summarize(tD = sum(tD)) %>%
dplyr::ungroup() %>%
dplyr::mutate(tD = dplyr::case_when(tD > 0 ~ 1,
TRUE ~ 0)) %>%
as.data.frame()
# Full condition list ---------------------------------------------------
data <- db$PLOT %>%
dplyr::filter(PLT_CN %in% keepThese$PLT_CN) %>%
dplyr::left_join(db$COND, by = c('PLT_CN')) %>%
dplyr::left_join(db$TREE, by = c('PLT_CN', 'CONDID')) %>%
dplyr::filter(!is.na(PROP_BASIS) & !is.na(CONDPROP_UNADJ)) %>%
dplyr::left_join(db$SUBP_COND_CHNG_MTRX, by = c('PLT_CN', 'CONDID')) %>%
dplyr::left_join(dplyr::select(db$PLOT, PLT_CN, sp, dplyr::all_of(grpP)),
by = c('PREV_PLT_CN' = 'PLT_CN'), suffix = c('2', '1')) %>%
dplyr::left_join(dplyr::select(db$COND, PLT_CN, landD, dplyr::all_of(grpC),
aD, CONDPROP_UNADJ, CONDID),
by = c('PREV_PLT_CN' = 'PLT_CN', 'PREVCOND' = 'CONDID'),
suffix = c('2', '1')) %>%
dplyr::left_join(db$TREE, by = c('PREV_PLT_CN' = 'PLT_CN', 'PREVCOND' = 'CONDID'),
suffix = c('2', '1')) %>%
dplyr::rename(CONDID1 = PREVCOND,
CONDID2 = CONDID) %>%
# Don't want to drop non-treed forestland
# TODO: this might lead to some problems when including any filters
dplyr::mutate(tD1 = tidyr::replace_na(tD1, treeD),
tD2 = tidyr::replace_na(tD2, treeD)) %>%
# Drop all microplot proportions
dplyr::filter(SUBPTYP != 2) %>%
# Check if macroplot is available
dplyr::group_by(PLT_CN) %>%
dplyr::mutate(macro = ifelse(3 %in% unique(SUBPTYP), 1, 0)) %>%
dplyr::ungroup() %>%
# If so, drop the subplot entries
dplyr::mutate(dropThese = dplyr::case_when(macro == 1 & SUBPTYP == 1 ~ 0,
TRUE ~ 1)) %>%
dplyr::filter(dropThese == 1) %>%
dplyr::select(-c(dropThese)) %>%
as.data.frame()
# Set up growth accounting for net change -------------------------------
if (chngType == 'net') {
data <- data %>%
# Clean up domain indicator and drop unnecessary cols
dplyr::mutate(tDI1 = landD1 * aD1 * sp1 * tD1,
tDI2 = landD2 * aD2 * sp2 * tD2) %>%
dplyr::select(PLT_CN, REMPER, SUBP, MEASYEAR, PLOT_STATUS_CD, PROP_BASIS,
tDI1, tDI2, dplyr::all_of(grp1), dplyr::all_of(grp2),
CONDID1, CONDID2,
SUBPTYP_PROP_CHNG) %>%
tidyr::pivot_longer(cols = tDI1:CONDID2,
names_to = c(".value", 'ONEORTWO'),
names_sep = -1) %>%
# Adjust for subplot, negate previous values, and apply domain indicator
dplyr::mutate(PREV_CONDPROP = dplyr::case_when(ONEORTWO == 1 ~ SUBPTYP_PROP_CHNG * tDI / 4,
TRUE ~ 0),
CONDPROP_CHNG = dplyr::case_when(
ONEORTWO == 1 ~ -SUBPTYP_PROP_CHNG * tDI / 4 / REMPER,
TRUE ~ SUBPTYP_PROP_CHNG * tDI / 4 / REMPER))
# Change by component
} else {
data <- data %>%
dtplyr::lazy_dt() %>%
dplyr::mutate(STATUS1 = dplyr::case_when(
landD1 & stringr::str_to_lower(landType) == 'forest' ~ 'Forest',
landD1 & stringr::str_to_lower(landType) == 'timber' ~ 'Timber',
!landD1 & stringr::str_to_lower(landType) == 'forest' ~ 'Non-forest',
!landD1 & stringr::str_to_lower(landType) == 'timber' ~ 'Non-timber')) %>%
dplyr::mutate(STATUS2 = dplyr::case_when(
landD2 & stringr::str_to_lower(landType) == 'forest' ~ 'Forest',
landD2 & stringr::str_to_lower(landType) == 'timber' ~ 'Timber',
!landD2 & stringr::str_to_lower(landType) == 'forest' ~ 'Non-forest',
!landD2 & stringr::str_to_lower(landType) == 'timber' ~ 'Non-timber')) %>%
# Clean up domain indicator and drop unnecessary cols
dplyr::mutate(TREE_DOMAIN1 = tD1,
TREE_DOMAIN2 = tD2,
AREA_DOMAIN1 = landD1 * aD1 * sp1,
AREA_DOMAIN2 = landD2 * aD2 * sp2) %>%
dplyr::select(PLT_CN, REMPER, SUBP, MEASYEAR, PLOT_STATUS_CD, PROP_BASIS,
STATUS1, STATUS2,
TREE_DOMAIN1, TREE_DOMAIN2, AREA_DOMAIN1, AREA_DOMAIN2,
dplyr::all_of(grp1), dplyr::all_of(grp2),
CONDID1, CONDID2,
SUBPTYP_PROP_CHNG) %>%
# Did the groups change? If so, track them and drop the rest
dplyr::mutate(chng = dplyr::case_when(
paste(TREE_DOMAIN1, AREA_DOMAIN1, !!!grp1Syms) !=
paste(TREE_DOMAIN2, AREA_DOMAIN2, !!!grp2Syms) ~ 1,
TRUE ~ 0)) %>%
# Adjust for subplot, negate previous values, and apply domain indicator
dplyr::mutate(tDI1 = TREE_DOMAIN1 * AREA_DOMAIN1,
tDI2 = TREE_DOMAIN2 * AREA_DOMAIN2,
tDI = ifelse(tDI1 + tDI2 > 0, 1, 0), # for nPlots
PREV_CONDPROP = SUBPTYP_PROP_CHNG * tDI / 4,
CONDPROP_CHNG = dplyr::case_when(chng == 1 ~ SUBPTYP_PROP_CHNG / 4 / REMPER,
TRUE ~ 0)) %>%
# Need this to trick sumToPlots
dplyr::mutate(CONDID = stringr::str_c(CONDID1, CONDID2)) %>%
as.data.frame()
# Update grpBy
grpBy = sort(c(c('STATUS1', grp1), c('STATUS2', grp2)))
if (!rlang::quo_is_null(treeDomain)) grpBy <- c('TREE_DOMAIN1', 'TREE_DOMAIN2', grpBy)
if (!rlang::quo_is_null(areaDomain)) grpBy <- c('AREA_DOMAIN1', 'AREA_DOMAIN2', grpBy)
}
# Plot-level summaries ------------------------------------------------------
if (byPlot & !condList) {
grpBy <- c('YEAR', grpBy)
grpSyms <- dplyr::syms(grpBy)
t <- data %>%
dplyr::mutate(YEAR = MEASYEAR) %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(!!!grpSyms, PLT_CN, REMPER) %>%
dplyr::summarize(PROP_CHNG = sum(CONDPROP_CHNG, na.rm = TRUE),
PREV_PROP_FOREST = sum(PREV_CONDPROP, na.rm = TRUE)) %>%
as.data.frame()
# Make it spatial
if (returnSpatial) {
t <- t %>%
dplyr::filter(!is.na(LAT) & !is.na(LON)) %>%
sf::st_as_sf(coords = c('LON', 'LAT'),
crs = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')
grpBy <- grpBy[grpBy %in% c('LAT', 'LON') == FALSE]
}
out <- list(tEst = t, aEst = NULL, grpBy = grpBy)
} else {
grpSyms <- dplyr::syms(grpBy)
t <- data %>%
dtplyr::lazy_dt() %>%
dplyr::mutate(ac = CONDPROP_CHNG,
prev = PREV_CONDPROP) %>%
dplyr::select(PLT_CN, AREA_BASIS = PROP_BASIS, CONDID, !!!grpSyms, ac, prev, tDI) %>%
as.data.frame()
# Filter to only contain plots with treeDomain == 1 so sample size
# calculations for numerator are correct, and so the actual values
# themselves are correct
t <- t %>%
dplyr::filter(tDI == 1) %>%
select(-tDI)
if (condList) {
tEst <- t %>%
dtplyr::lazy_dt() %>%
dplyr::mutate(EVAL_TYP = 'CHNG') %>%
dplyr::group_by(PLT_CN, EVAL_TYP, AREA_BASIS, !!!grpSyms, CONDID) %>%
dplyr::summarize(PROP_CHNG = sum(ac, na.rm = TRUE),
PREV_PROP_FOREST = sum(prev, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
as.data.frame()
out <- list(tEst = tEst, aEst = NULL, grpBy = grpBy)
} else {
# Sum variable(s) up to plot-level and adjust for non-response
tPlt <- sumToPlot(dplyr::select(t, -c(prev)), pops, grpBy)
aPlt <- sumToPlot(dplyr::select(t, -c(ac)), pops, grpBy)
# Adding YEAR to groups
grpBy <- c('YEAR', grpBy)
# Sum variable(s) up to strata then estimation unit level
eu.sums <- sumToEU(db, tPlt, aPlt, pops, grpBy, grpBy, method, lambda)
tEst <- eu.sums$x
aEst <- eu.sums$y
out <- list(tEst = tEst, aEst = aEst, grpBy = grpBy)
}
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.