Nothing
growMort <- function(db, grpBy = NULL, polys = NULL, returnSpatial = FALSE,
bySpecies = FALSE, bySizeClass = FALSE, landType = 'forest',
treeType = 'all', method = 'TI', lambda = 0.5,
stateVar = 'TPA', treeDomain = NULL, areaDomain = NULL,
totals = FALSE, variance = FALSE, byPlot = FALSE,
treeList = FALSE, nCores = 1) {
# Defuse user-supplied expressions in grpBy, areaDomain, and treeDomain
grpBy_quo <- rlang::enquo(grpBy)
areaDomain <- rlang::enquo(areaDomain)
treeDomain <- rlang::enquo(treeDomain)
# Handle iterator if db is remote
remote <- ifelse(class(db) == 'Remote.FIA.Database', 1, 0)
# Takes value 1 if not remote. iter for remote is a vector of different state IDs.
iter <- remoteIter(db, remote)
# Check for a most recent subset (simple logical value)
mr <- checkMR(db, remote)
# Prep for areal summary (converts polys to sf, converts factors to chrs,
# and adds the polyID column giving a unique ID to each areal unit).
polys <- arealSumPrep1(polys)
# Run the main portion of the function
out <- lapply(X = iter, FUN = growMortStarter, db, grpBy_quo,
polys, returnSpatial, bySpecies, bySizeClass, landType,
treeType, method, lambda, stateVar, treeDomain, areaDomain,
totals, byPlot, treeList, nCores, remote, mr)
# Bring the results back
out <- unlist(out, recursive = FALSE)
# Throw an error if there are no plots that occur within the polygons of interest
if (remote) {
out <- dropStatesOutsidePolys(out)
}
# Extract things from the output list
aEst <- dplyr::bind_rows(out[names(out) == 'aEst'])
tEst <- dplyr::bind_rows(out[names(out) == 'tEst'])
grpBy <- out[names(out) == 'grpBy'][[1]]
aGrpBy <- out[names(out) == 'aGrpBy'][[1]]
grpSyms <- dplyr::syms(grpBy)
aGrpSyms <- dplyr::syms(aGrpBy)
# Summarize population estimates across estimation units ----------------
if (!byPlot & !treeList) {
# Combine most recent population estimates across states with potentially
# different reporting schedules (e.g., if 2016 is most recent in MI and 2017
# is most recent in WI, combine them and label as 2017.
if (mr) {
tEst <- combineMR(tEst)
aEst <- combineMR(aEst)
}
# Totals and ratios ---------------
aEst <- aEst %>%
dplyr::group_by(!!!aGrpSyms) %>%
dplyr::summarize(dplyr::across(dplyr::everything(), \(x) sum(x, na.rm = TRUE))) %>%
dplyr::select(!!!aGrpSyms, fa_mean, fa_var, nPlots.y)
tEst <- tEst %>%
dplyr::group_by(!!!grpSyms) %>%
dplyr::summarize(dplyr::across(dplyr::everything(), \(x) sum(x, na.rm = TRUE))) %>%
dplyr::left_join(aEst, by = aGrpBy) %>%
dplyr::mutate(CURR_TOTAL = tPlot_mean,
PREV_TOTAL = pPlot_mean,
RECR_TOTAL = rPlot_mean,
MORT_TOTAL = mPlot_mean,
REMV_TOTAL = hPlot_mean,
GROW_TOTAL = gPlot_mean,
CHNG_TOTAL = cPlot_mean,
AREA_TOTAL = fa_mean,
# Ratios
RECR_TPA = rPlot_mean / fa_mean,
MORT_TPA = mPlot_mean / fa_mean,
REMV_TPA = hPlot_mean / fa_mean,
GROW_TPA = gPlot_mean / fa_mean,
CHNG_TPA = cPlot_mean / fa_mean,
RECR_PERC = rPlot_mean / pPlot_mean,
MORT_PERC = mPlot_mean / pPlot_mean,
REMV_PERC = hPlot_mean / pPlot_mean,
GROW_PERC = gPlot_mean / pPlot_mean,
CHNG_PERC = cPlot_mean / pPlot_mean,
# Variances
CURR_TOTAL_VAR = tPlot_var,
PREV_TOTAL_VAR = pPlot_var,
RECR_TOTAL_VAR = rPlot_var,
MORT_TOTAL_VAR = mPlot_var,
REMV_TOTAL_VAR = hPlot_var,
GROW_TOTAL_VAR = gPlot_var,
CHNG_TOTAL_VAR = cPlot_var,
AREA_TOTAL_VAR = fa_var,
RECR_TPA_VAR = ratioVar(rPlot_mean, fa_mean, rPlot_var, fa_var, rPlot_cv),
MORT_TPA_VAR = ratioVar(mPlot_mean, fa_mean, mPlot_var, fa_var, mPlot_cv),
REMV_TPA_VAR = ratioVar(hPlot_mean, fa_mean, hPlot_var, fa_var, hPlot_cv),
GROW_TPA_VAR = ratioVar(gPlot_mean, fa_mean, gPlot_var, fa_var, gPlot_cv),
CHNG_TPA_VAR = ratioVar(cPlot_mean, fa_mean, cPlot_var, fa_var, cPlot_cv),
RECR_PERC_VAR = ratioVar(rPlot_mean, pPlot_mean, rPlot_var, pPlot_var, rPlot_cv_t),
MORT_PERC_VAR = ratioVar(mPlot_mean, pPlot_mean, mPlot_var, pPlot_var, mPlot_cv_t),
REMV_PERC_VAR = ratioVar(hPlot_mean, pPlot_mean, hPlot_var, pPlot_var, hPlot_cv_t),
GROW_PERC_VAR = ratioVar(gPlot_mean, pPlot_mean, gPlot_var, pPlot_var, gPlot_cv_t),
CHNG_PERC_VAR = ratioVar(cPlot_mean, pPlot_mean, cPlot_var, pPlot_var, cPlot_cv_t),
# Convert to percentages
RECR_PERC = RECR_PERC * 100,
MORT_PERC = MORT_PERC * 100,
REMV_PERC = REMV_PERC * 100,
GROW_PERC = GROW_PERC * 100,
CHNG_PERC = CHNG_PERC * 100,
RECR_PERC_VAR = RECR_PERC_VAR * 100^2,
MORT_PERC_VAR = MORT_PERC_VAR * 100^2,
REMV_PERC_VAR = REMV_PERC_VAR * 100^2,
GROW_PERC_VAR = GROW_PERC_VAR * 100^2,
CHNG_PERC_VAR = CHNG_PERC_VAR * 100^2,
# Sampling Errors
CURR_TOTAL_SE = sqrt(tPlot_var) / tPlot_mean * 100,
PREV_TOTAL_SE = sqrt(pPlot_var) / pPlot_mean * 100,
RECR_TOTAL_SE = sqrt(rPlot_var) / rPlot_mean * 100,
MORT_TOTAL_SE = sqrt(mPlot_var) / mPlot_mean * 100,
REMV_TOTAL_SE = sqrt(hPlot_var) / rPlot_mean * 100,
GROW_TOTAL_SE = sqrt(gPlot_var) / gPlot_mean * 100,
CHNG_TOTAL_SE = sqrt(cPlot_var) / cPlot_mean * 100,
AREA_TOTAL_SE = sqrt(fa_var) / fa_mean * 100,
RECR_TPA_SE = sqrt(RECR_TPA_VAR) / RECR_TPA * 100,
MORT_TPA_SE = sqrt(MORT_TPA_VAR) / MORT_TPA * 100,
REMV_TPA_SE = sqrt(REMV_TPA_VAR) / REMV_TPA * 100,
GROW_TPA_SE = sqrt(GROW_TPA_VAR) / GROW_TPA * 100,
RECR_PERC_SE = sqrt(RECR_PERC_VAR) / RECR_PERC * 100,
MORT_PERC_SE = sqrt(MORT_PERC_VAR) / MORT_PERC * 100,
REMV_PERC_SE = sqrt(REMV_PERC_VAR) / REMV_PERC * 100,
GROW_PERC_SE = sqrt(GROW_PERC_VAR) / GROW_PERC * 100,
CHNG_PERC_SE = sqrt(CHNG_PERC_VAR) / CHNG_PERC * 100,
# Plot counts
nPlots_TREE = nPlots.x,
nPlots_AREA = nPlots.y,
N = P2PNTCNT_EU) %>%
dplyr::select(!!!grpSyms, RECR_TPA:CHNG_PERC,
RECR_TOTAL:CHNG_TOTAL, PREV_TOTAL, CURR_TOTAL, AREA_TOTAL,
RECR_TPA_VAR:CHNG_PERC_VAR,
RECR_TOTAL_VAR:CHNG_TOTAL_VAR, PREV_TOTAL_VAR, CURR_TOTAL_VAR, AREA_TOTAL_VAR,
RECR_TPA_SE:CHNG_PERC_SE,
RECR_TOTAL_SE:CHNG_TOTAL_SE, PREV_TOTAL_SE, CURR_TOTAL_SE, AREA_TOTAL_SE,
nPlots_TREE, nPlots_AREA, N) %>%
# Rounding errors can cause GROW_TPA to take an extremely small value instead of zero
# Make it zero when this happens
dplyr::mutate(dplyr::across(c(GROW_TPA, GROW_PERC, GROW_TOTAL,
GROW_TPA_VAR, GROW_PERC_VAR, GROW_TOTAL_VAR),
.fns = ~case_when(abs(.x) < 1e-5 ~ 0,
TRUE ~ .x)))
# Drop totals unless told not to
if (!totals) {
tEst <- tEst[, !stringr::str_detect(names(tEst), '_TOTAL')]
}
# Select either variance or sampling errors, depending on input
if (variance) {
tEst <- tEst[, !stringr::str_detect(names(tEst), '_SE')]
} else {
tEst <- tEst[, !stringr::str_detect(names(tEst), '_VAR')]
}
}
# Modify names if a different state variable was given
if (stateVar != 'TPA') {
names(tEst) <- str_replace(names(tEst), 'TPA', paste(stateVar, 'ACRE', sep = '_'))
}
names(tEst) <- str_replace(names(tEst), 'BAA_ACRE', 'BAA')
# Pretty output
tEst <- tEst %>%
dplyr::ungroup() %>%
dplyr::mutate_if(is.factor, as.character) %>%
as_tibble()
# We don't include YEAR in treeList output, and NA groups will be important
# for retaining non-treed forestland
if (!treeList) {
tEst <- tEst %>%
tidyr::drop_na(grpBy[!c(grpBy %in% names(polys))]) %>%
dplyr::arrange(YEAR)
}
# Prep for spatial plots
if (returnSpatial & byPlot) {
grpBy <- grpBy[grpBy %in% c('LAT', 'LON') == FALSE]
}
# For spatial polygons
if (returnSpatial & !byPlot) {
sfCol <- attr(polys, 'sf_column')
sfColSyms <- dplyr::syms(sfCol)
tEst <- dplyr::left_join(tEst,
as.data.frame(dplyr::select(polys, polyID, !!!sfColSyms)),
by = 'polyID')
}
# Convert to sf if spatial
if (returnSpatial) {
tEst <- sf::st_sf(tEst)
}
return(tEst)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.