Nothing
growMortStarter <- function(x, db, grpBy_quo = NULL, polys = NULL,
returnSpatial = FALSE, bySpecies = FALSE,
bySizeClass = FALSE, landType = 'forest',
treeType = 'all', method = 'TI', lambda = 0.5,
stateVar = 'TPA', treeDomain = NULL,
areaDomain = NULL, totals = FALSE, byPlot = FALSE,
treeList = FALSE, nCores = 1, remote, mr) {
# Read required data and prep the database ------------------------------
# If SUBP_COND_CHNG_MTRX is not provided, estimates will not use growth
# accounting method. If it is, growth accounting method is used.
if ('SUBP_COND_CHNG_MTRX' %in% names(db)) {
reqTables <- c('PLOT', 'COND', 'TREE', 'TREE_GRM_COMPONENT', 'TREE_GRM_MIDPT',
'TREE_GRM_BEGIN', 'SUBP_COND_CHNG_MTRX',
'POP_PLOT_STRATUM_ASSGN', 'POP_ESTN_UNIT', 'POP_EVAL',
'POP_STRATUM', 'POP_EVAL_TYP', 'POP_EVAL_GRP', 'PLOTGEOM')
} else {
reqTables <- c('PLOT', 'COND', 'TREE', 'TREE_GRM_COMPONENT', 'TREE_GRM_MIDPT',
'TREE_GRM_BEGIN', 'POP_PLOT_STRATUM_ASSGN', 'POP_ESTN_UNIT', 'POP_EVAL',
'POP_STRATUM', 'POP_EVAL_TYP', 'POP_EVAL_GRP', 'PLOTGEOM')
}
# If remote, read in state by state. Otherwise, drop all unnecessary tables.
db <- readRemoteHelper(x, db, remote, reqTables, nCores)
# Handle TX issues: we only keep inventory years that are present in
# BOTH EAST AND WEST TX
db <- handleTX(db)
# Check some of the inputs ----------------------------------------------
# polys -----------------------------
if (!is.null(polys) &
dplyr::first(class(polys)) %in%
c('sf', 'SpatialPolygons', 'SpatialPolygonsDataFame') == FALSE) {
stop("polys must be a spatial polygons object of class sp or sf.")
}
# landType --------------------------
if (landType %in% c('timber', 'forest') == FALSE) {
stop('landType must be one of: "forest" or "timber".')
}
# treeType --------------------------
if (treeType %in% c('gs', 'all') == FALSE) {
stop('treeType must be one of: "gs", or "all".')
}
# db required tables ----------------
if (any(reqTables[!c(reqTables %in% 'SUBP_COND_CHNG_MTRX')] %in% names(db) == FALSE)){
missT <- reqTables[reqTables %in% names(db) == FALSE]
stop(paste('Tables', paste (as.character(missT), collapse = ', '),
'not found in object db.'))
}
# method ----------------------------
if (stringr::str_to_upper(method) %in% c('TI', 'SMA', 'LMA', 'EMA',
'ANNUAL') == FALSE) {
warning(paste('Method', method, 'unknown. Defaulting to Temporally Indifferent (TI).'))
}
# Other basic variable prep ---------------------------------------------
# Join PLOT with PLOTGEOM to allow plot-level geographic attributes to be used
# in grpBy statements
# First need to get rid of other columns in PLOT in PLOTGEOM.
db$PLOTGEOM <- db$PLOTGEOM %>%
dplyr::select(-STATECD, -INVYR, -UNITCD, -COUNTYCD, -PLOT, -LAT, -LON,
-dplyr::starts_with('CREATED'), -dplyr::starts_with('MODIFIED'))
db$PLOT <- db$PLOT %>%
dplyr::left_join(db$PLOTGEOM, by = 'CN')
# Get a plot CN and a new pltID that gives a unique ID to each plot
# PLT_CN is UNITCD, STATECD, COUNTYCD, PLOT, and INVYR
db$PLOT <- db$PLOT %>%
dplyr::mutate(PLT_CN = CN,
pltID = stringr::str_c(UNITCD, STATECD, COUNTYCD, PLOT, sep = '_'))
# Also rename for later
db$TREE <- db$TREE %>%
dplyr::mutate(TRE_CN = CN)
# Convert grpBy to character
grpBy <- grpByToChar(db, grpBy_quo)
# Unique plot ID through time (pltID)
if (byPlot | treeList) {
grpBy <- c('pltID', grpBy)
}
# Intersect plots with polygons if polygons are given
if (!is.null(polys)) {
# Add shapefile names to grpBy
# Determine the name of the sf column. This assumes the user has not
# manually changed the "sf_column" attribute. By default, this is the
# same as the sf column. This is needed, because there is no single
# name for the sf column. It is usually geom or geometry, but that
# is not always the case.
sfCol <- attr(polys, 'sf_column')
grpBy <- c(grpBy, names(polys)[names(polys) != sfCol])
# Do the intersection
db <- arealSumPrep2(db, grpBy, polys, nCores, remote)
# If there's nothing there, skip the state
if (is.null(db)) return('no plots in polys')
}
# Update grpBy if returning spatial points.
if (byPlot & returnSpatial) {
grpBy <- c(grpBy, 'LON', 'LAT')
}
# Join with REF_SPECIES (stored in package's internal data) to get
# species-level carbon fractions.
db$TREE <- db$TREE %>%
dplyr::left_join(dplyr::select(intData$REF_SPECIES_DEC_2024,
c('SPCD', 'COMMON_NAME', 'GENUS', 'SPECIES',
'CARBON_RATIO_LIVE')),
by = 'SPCD') %>%
dplyr::mutate(SCIENTIFIC_NAME = paste(GENUS, SPECIES, sep = ' ')) %>%
dplyr::mutate_if(is.factor, character)
db$TREE_GRM_MIDPT <- db$TREE_GRM_MIDPT %>%
dplyr::left_join(dplyr::select(intData$REF_SPECIES_DEC_2024,
c('SPCD', 'COMMON_NAME', 'GENUS', 'SPECIES',
'CARBON_RATIO_LIVE')),
by = 'SPCD') %>%
dplyr::mutate(SCIENTIFIC_NAME = paste(GENUS, SPECIES, sep = ' ')) %>%
dplyr::mutate_if(is.factor, character)
db$TREE_GRM_BEGIN <- db$TREE_GRM_BEGIN %>%
dplyr::left_join(dplyr::select(intData$REF_SPECIES_DEC_2024,
c('SPCD', 'COMMON_NAME', 'GENUS', 'SPECIES',
'CARBON_RATIO_LIVE')),
by = 'SPCD') %>%
dplyr::mutate(SCIENTIFIC_NAME = paste(GENUS, SPECIES, sep = ' ')) %>%
dplyr::mutate_if(is.factor, character)
# Handle the state variable, only applying to the midpoint table for consistency
if (stringr::str_to_upper(stateVar) == 'TPA'){
db$TREE_GRM_MIDPT$state <- 1
db$TREE_GRM_BEGIN$state <- 1
db$TREE$state_recr <- 1
} else if (stringr::str_to_upper(stateVar) == 'BAA'){
db$TREE_GRM_MIDPT$state <- basalArea(db$TREE_GRM_MIDPT$DIA)
db$TREE_GRM_BEGIN$state <- basalArea(db$TREE_GRM_BEGIN$DIA)
db$TREE$state_recr <- basalArea(db$TREE$DIA)
} else if (stringr::str_to_upper(stateVar) == 'SAWVOL'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$VOLCSNET
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$VOLCSNET
db$TREE$state_recr <- db$TREE$VOLCSNET
} else if (stringr::str_to_upper(stateVar) == 'SAWVOL_BF'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$VOLBFNET
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$VOLBFNET
db$TREE$state_recr <- db$TREE$VOLBFNET
} else if (stringr::str_to_upper(stateVar) == 'NETVOL'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$VOLCFNET
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$VOLCFNET
db$TREE$state_recr <- db$TREE$VOLCFNET
} else if (stringr::str_to_upper(stateVar) == 'SNDVOL'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$VOLCFSND
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$VOLCFSND
db$TREE$state_recr <- db$TREE$VOLCFSND
} else if (stringr::str_to_upper(stateVar) == 'BIO_AG'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$DRYBIO_AG
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$DRYBIO_AG
db$TREE$state_recr <- db$TREE$DRYBIO_AG
} else if (stringr::str_to_upper(stateVar) == 'BIO_BG'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$DRYBIO_BG
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$DRYBIO_BG
db$TREE$state_recr <- db$TREE$DRYBIO_BG
} else if (stringr::str_to_upper(stateVar) == 'BIO'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$DRYBIO_BG + db$TREE_GRM_MIDPT$DRYBIO_AG
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$DRYBIO_BG + db$TREE_GRM_BEGIN$DRYBIO_AG
db$TREE$state_recr <- db$TREE$DRYBIO_BG + db$TREE$DRYBIO_AG
} else if (stringr::str_to_upper(stateVar) == 'CARB_AG'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$DRYBIO_AG * db$TREE_GRM_MIDPT$CARBON_RATIO_LIVE
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$DRYBIO_AG * db$TREE_GRM_BEGIN$CARBON_RATIO_LIVE
db$TREE$state_recr <- db$TREE$DRYBIO_AG * db$TREE$CARBON_RATIO_LIVE
} else if (stringr::str_to_upper(stateVar) == 'CARB_BG'){
db$TREE_GRM_MIDPT$state <- db$TREE_GRM_MIDPT$DRYBIO_BG * db$TREE_GRM_MIDPT$CARBON_RATIO_LIVE
db$TREE_GRM_BEGIN$state <- db$TREE_GRM_BEGIN$DRYBIO_BG * db$TREE_GRM_BEGIN$CARBON_RATIO_LIVE
db$TREE$state_recr <- db$TREE$DRYBIO_BG * db$TREE$CARBON_RATIO_LIVE
} else if (stringr::str_to_upper(stateVar) == 'CARB'){
db$TREE_GRM_MIDPT$state <- (db$TREE_GRM_MIDPT$DRYBIO_AG + db$TREE_GRM_MIDPT$DRYBIO_BG) *
db$TREE_GRM_MIDPT$CARBON_RATIO_LIVE
db$TREE_GRM_BEGIN$state <- (db$TREE_GRM_BEGIN$DRYBIO_AG + db$TREE_GRM_BEGIN$DRYBIO_BG) *
db$TREE_GRM_BEGIN$CARBON_RATIO_LIVE
db$TREE$state_recr <- (db$TREE$DRYBIO_AG + db$TREE$DRYBIO_BG) *
db$TREE$CARBON_RATIO_LIVE
} else {
stop(paste0('Method not known for stateVar: ', stateVar, '. Please choose one of: TPA, BAA, SAWVOL, SAWVOL_BF, NETVOL, BIO_AG, BIO_BG, BIO, CARB_AG, CARB_BG, or CARB.' ))
}
# Build a domain indicator for each observation (1 or 0) ----------------
# Land type and tree type combined
db <- typeDomain_grow(db, treeType, landType, type = 'gm', stateVar)
# Spatial boundary (determine which of the plots fall within the polygons
# supplied in polys)
if (!is.null(polys)) {
db$PLOT$sp <- ifelse(!is.na(db$PLOT$polyID), 1, 0)
} else {
# If no polys, use all plots.
db$PLOT$sp <- 1
}
# User defined domain indicator for area (ex. specific forest type)
db <- udAreaDomain(db, areaDomain)
# User defined domain indicator for trees (ex. trees > 20 ft tall)
db <- udTreeDomain(db, treeDomain)
# Handle population tables ----------------------------------------------
# Filtering out all inventories that are not relevant to the current
# estimation type. If using estimator other than TI, handle the differences in
# P2POINTCNT and in assigning YEAR column (YEAR = END_INVYR if method = 'TI')
pops <- handlePops(db, evalType = c('GROW', 'MORT', 'REMV'), method, mr)
# Generate a list that tells us if a plot is ever associated with a growth
# accounting inventory. If so, we will be more strict with domain definitions.
plt.ga <- pops %>%
dtplyr::lazy_dt() %>%
dplyr::mutate(ga = case_when(GROWTH_ACCT == 'Y' ~ 1,
TRUE ~ 0)) %>%
dplyr::group_by(PLT_CN) %>%
dplyr::summarise(ga = sum(ga, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::mutate(ga = case_when(ga > 0 ~ 1, TRUE ~ 0)) %>%
as.data.frame()
# A lot of states do their stratification in such a way that makes it impossible
# to estimate variance of annual panels with the post-stratified estimator. That is,
# the number of plots within a panel within a stratum is less than 2. When this happens
# merge strata so that all have at least two observations.
if (stringr::str_to_upper(method) %in% c('SMA', 'LMA', 'EMA', 'ANNUAL') & !byPlot) {
pops <- mergeSmallStrata(db, pops)
}
## Canned groups -------------------------------------------------------------
## Add species to groups
if (bySpecies) {
# Add species names to grpBy. Note the data was already connected
# to REF_SPECIES previously, which is used to pull in the species-specific
# carbon fractions regardless of reporting by species.
grpBy <- c(grpBy, 'SPCD', 'COMMON_NAME', 'SCIENTIFIC_NAME')
}
# Break into size classes
if (bySizeClass) {
grpBy <- c(grpBy, 'sizeClass')
db$TREE$sizeClass <- makeClasses(db$TREE$DIA, interval = 2, numLabs = TRUE)
db$TREE <- db$TREE[!is.na(db$TREE$sizeClass), ]
}
# Prep the tree list ----------------------------------------------------
# Narrow the tables to the necessary variables.
# Which grpByNames are in which table? Helps us subset below.
# grpBy names in PLOT
grpP <- names(db$PLOT)[names(db$PLOT) %in% grpBy]
# grpBy names in COND
grpC <- names(db$COND)[names(db$COND) %in% grpBy &
!c(names(db$COND) %in% grpP)]
# grpBy names in TREE
grpT <- names(db$TREE)[names(db$TREE) %in% grpBy &
!c(names(db$TREE) %in% c(grpP, grpC))]
# PLOT ------------------------------
db$PLOT <- db$PLOT %>%
dplyr::select(c(PLT_CN, STATECD, MACRO_BREAKPOINT_DIA,
INVYR, MEASYEAR, PLOT_STATUS_CD,
dplyr::all_of(grpP), sp, COUNTYCD,
PREV_PLT_CN, REMPER)) %>%
# Drop non-forested plots, and those otherwise outside our domain of interest.
# Note that this will result in keeping all plots that were forested during
# at least one time point.
dplyr::filter(PLOT_STATUS_CD == 1 & sp == 1) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% pops$PLT_CN)
# COND ------------------------------
db$COND <- db$COND %>%
dplyr::select(c(PLT_CN, CONDPROP_UNADJ, PROP_BASIS,
COND_STATUS_CD, CONDID,
dplyr::all_of(grpC), aD, landD)) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
# TREE ------------------------------
db$TREE <- db$TREE %>%
dplyr::select(c(PLT_CN, CONDID, PREVCOND, TRE_CN,
PREV_TRE_CN, SUBP, TREE, dplyr::all_of(grpT), tD,
typeD, state_recr, TPA_UNADJ,
STATUSCD, DIA)) %>%
# Drop plots outside our domain of interest
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
# TREE_GRM_COMPONENT ----------------
db$TREE_GRM_COMPONENT <- db$TREE_GRM_COMPONENT %>%
dplyr::select(c(PLT_CN, TRE_CN, SUBPTYP_GRM, TPAGROW_UNADJ, TPARECR_UNADJ,
TPAREMV_UNADJ, TPAMORT_UNADJ, COMPONENT)) %>%
# Alternative would be to do COMPONENT != 'NOT USED'
dplyr::filter(TPAGROW_UNADJ > 0 | TPARECR_UNADJ > 0 | TPAREMV_UNADJ > 0 | TPAMORT_UNADJ > 0) %>%
# Drop visits not used in our eval of interest. This used to be the plt filter
# dplyr::filter(PLT_CN %in% db$PLOT$PLT_CN) %>%
dplyr::filter(TRE_CN %in% db$TREE$TRE_CN) %>%
# Convert NAs in TPAMORT_UNADJ and TPAREMV_UNADJ to 0s. This corresponds to
# situations where the given tree is not MORT or REMV, but there is some sort of
# GRM record for it (i.e., GROW or RECR). This is needed for calculations later on.
dplyr::mutate(TPAREMV_UNADJ = ifelse(is.na(TPAREMV_UNADJ), 0, TPAREMV_UNADJ),
TPAMORT_UNADJ = ifelse(is.na(TPAMORT_UNADJ), 0, TPAMORT_UNADJ)) %>%
dplyr::select(-c(PLT_CN))
# TREE_GRM_MIDPT --------------------
db$TREE_GRM_MIDPT <- db$TREE_GRM_MIDPT %>%
select(c(TRE_CN, DIA, state)) %>%
filter(TRE_CN %in% db$TREE$TRE_CN)
# TREE_GRM_BEGIN --------------------
db$TREE_GRM_BEGIN <- db$TREE_GRM_BEGIN %>%
dplyr::select(c(TRE_CN, DIA, state)) %>%
dplyr::filter(TRE_CN %in% db$TREE$TRE_CN)
# SUBP_COND_CHNG_MTRX ---------------
if ('SUBP_COND_CHNG_MTRX' %in% names(db)) {
db$SUBP_COND_CHNG_MTRX <- dplyr::select(db$SUBP_COND_CHNG_MTRX, PLT_CN, PREV_PLT_CN,
SUBPTYP, SUBPTYP_PROP_CHNG, PREVCOND, CONDID) %>%
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
}
# Separate area grouping names from tree grouping names
if (!is.null(polys)){
aGrpBy <- grpBy[grpBy %in% c(names(db$PLOT), names(db$COND), names(polys))]
} else {
aGrpBy <- grpBy[grpBy %in% c(names(db$PLOT), names(db$COND))]
}
# Full tree list. Note that this consists of trees that were alive only in T1
# (mortality and cut), trees only in the sample in T2 (ingrowth), and trees
# alive in both (survivor)
data <- db$PLOT %>%
dtplyr::lazy_dt() %>%
dplyr::select(c(PLT_CN, STATECD, MACRO_BREAKPOINT_DIA, INVYR,
MEASYEAR, PLOT_STATUS_CD, PREV_PLT_CN, REMPER,
dplyr::all_of(grpP), sp)) %>%
# Link to COND
dplyr::left_join(dplyr::select(db$COND, c(PLT_CN, CONDPROP_UNADJ, PROP_BASIS,
COND_STATUS_CD, CONDID, dplyr::all_of(grpC),
aD, landD)),
by = c('PLT_CN')) %>%
# Link to TREE
dplyr::left_join(dplyr::select(db$TREE, c(PLT_CN, CONDID, PREVCOND, TRE_CN,
PREV_TRE_CN, SUBP, TREE, dplyr::all_of(grpT),
tD, typeD, state_recr, TPA_UNADJ, STATUSCD, DIA)),
by = c('PLT_CN', 'CONDID')) %>%
# Link to TREE_GRM_COMPONENT
dplyr::left_join(dplyr::select(db$TREE_GRM_COMPONENT, c(TRE_CN, SUBPTYP_GRM,
TPAGROW_UNADJ, TPARECR_UNADJ,
TPAREMV_UNADJ, TPAMORT_UNADJ,
COMPONENT)),
by = c('TRE_CN')) %>%
# Link to TREE_GRM_MIDPT
dplyr::left_join(dplyr::select(db$TREE_GRM_MIDPT, c(TRE_CN, DIA, state)),
by = c('TRE_CN'), suffix = c('', '.mid')) %>%
# Join with TREE_GRM_BEGIN
dplyr::left_join(dplyr::select(db$TREE_GRM_BEGIN, c(TRE_CN, DIA, state)),
by = c('TRE_CN'), suffix = c('', '.beg')) %>%
# Link previous plot measurement to PLOT
dplyr::left_join(dplyr::select(db$PLOT, c(PLT_CN, dplyr::all_of(grpP), sp)),
by = c('PREV_PLT_CN' = 'PLT_CN'), suffix = c('', '.prev')) %>%
# Link previous cond to COND
dplyr::left_join(dplyr::select(db$COND, c(PLT_CN, CONDID, landD, aD, dplyr::all_of(grpC),
COND_STATUS_CD)),
by = c('PREV_PLT_CN' = 'PLT_CN', 'PREVCOND' = 'CONDID'),
suffix = c('', '.prev')) %>%
# Link previous tree measurement to TREE
dplyr::left_join(dplyr::select(db$TREE, c(TRE_CN, dplyr::all_of(grpT),
typeD, tD, DIA, STATUSCD, TPA_UNADJ,
state.prev = state_recr)),
by = c('PREV_TRE_CN' = 'TRE_CN'), suffix = c('', '.prev')) %>%
# Reset the TPA*_UNADJ to the specific state of interest. Fixing the column names
# is dealt with later.
# Replace state.prev with state.beg if state.beg is not NA.
# state.beg comes from the TREE_GRM_BEGIN. The reason they differ is
# because of changes made to an original measurement upon remeasurement of
# the tree (e.g., fix an obvious error, change species identification).
dplyr::mutate(state.prev = ifelse(!is.na(state.beg), state.beg, state.prev)) %>%
dplyr::mutate(TPAREMV_UNADJ = TPAREMV_UNADJ * state,
TPAMORT_UNADJ = TPAMORT_UNADJ * state,
TPARECR_UNADJ = TPARECR_UNADJ * state_recr / REMPER,
# State recruit is the state variable adjustment for ALL TREES at T2,
# So we can estimate live TPA at t2 (t1 unavailable w/out growth accounting) with:
TPA_UNADJ = TPAGROW_UNADJ * state_recr *
ifelse(COMPONENT %in% c('SURVIVOR', 'INGROWTH'), 1, 0),
TPA_UNADJ.prev = TPAGROW_UNADJ * state.prev *
ifelse(COMPONENT %in% c('SURVIVOR'), 1, 0),
) %>%
# Add our indicator of whether or not a plot is ever associated with a
# growth accounting inventory
dplyr::left_join(plt.ga, by = 'PLT_CN') %>%
# Set up our domain indicators accordingly
dplyr::mutate(aChng = dplyr::case_when(ga == 1 & COND_STATUS_CD == 1 &
COND_STATUS_CD.prev == 1 & !is.null(CONDPROP_UNADJ) ~ 1,
ga == 0 ~ 1,
TRUE ~ 0),
tChng = dplyr::case_when(ga == 1 & COND_STATUS_CD == 1 & COND_STATUS_CD.prev == 1 ~ 1,
ga == 0 ~ 1,
TRUE ~ 0),
landD.prev = dplyr::case_when(ga == 1 & landD == 1 & landD.prev == 1 ~ 1,
ga == 0 & is.na(landD) & is.na(landD.prev) ~ 0,
ga == 0 & is.na(landD.prev) ~ landD,
ga == 0 ~ landD.prev,
TRUE ~ 0)) %>%
# If previous attributes are unavailable for trees, default to current
dplyr::mutate(tD.prev = dplyr::case_when(is.na(tD.prev) ~ tD, TRUE ~ tD.prev),
typeD.prev = dplyr::case_when(is.na(typeD.prev) ~ typeD, TRUE ~ typeD.prev),
aD.prev = dplyr::case_when(is.na(aD.prev) ~ aD, TRUE ~ aD.prev),
sp.prev = dplyr::case_when(is.na(sp.prev) ~ sp, TRUE ~ sp.prev)) %>%
# Comprehensive domain indicators
dplyr::mutate(tDI = landD.prev * aD.prev * tD.prev * typeD.prev * sp.prev * tChng,
tDI_r = landD * aD * tD * typeD * sp * tChng, # All previous attributes NA for recruitment
aDI = landD * aD * sp * aChng) %>%
as.data.frame()
if ('SUBP_COND_CHNG_MTRX' %in% names(db)) {
# Doing area separately now for growth accounting plots
aData <- dplyr::select(db$PLOT, c(PLT_CN, STATECD, MACRO_BREAKPOINT_DIA,
INVYR, MEASYEAR, PLOT_STATUS_CD, PREV_PLT_CN,
REMPER, dplyr::all_of(grpP), sp)) %>%
dplyr::left_join(dplyr::select(db$SUBP_COND_CHNG_MTRX, PLT_CN, PREV_PLT_CN,
SUBPTYP, SUBPTYP_PROP_CHNG, PREVCOND, CONDID),
by = c('PLT_CN', 'PREV_PLT_CN')) %>%
dplyr::left_join(dplyr::select(db$COND, c(PLT_CN, CONDPROP_UNADJ, PROP_BASIS,
COND_STATUS_CD, CONDID, dplyr::all_of(grpC),
aD, landD)),
by = c('PLT_CN', 'CONDID')) %>%
dplyr::left_join(dplyr::select(db$COND, c(PLT_CN, PROP_BASIS, COND_STATUS_CD,
CONDID, dplyr::all_of(grpC), aD, landD)),
by = c('PREV_PLT_CN' = 'PLT_CN', 'PREVCOND' = 'CONDID'),
suffix = c('', '.prev')) %>%
dplyr::mutate(aChng = dplyr::if_else(COND_STATUS_CD == 1 &
COND_STATUS_CD.prev == 1 &
!is.null(CONDPROP_UNADJ) &
SUBPTYP == 1,
1, 0),
SUBPTYP_PROP_CHNG = SUBPTYP_PROP_CHNG * .25)
aData$landD <- ifelse(aData$landD == 1 & aData$landD.prev == 1, 1, 0)
aData$aDI_ga <- aData$landD * aData$aD * aData$sp * aData$aChng
}
# Plot-level summaries --------------------------------------------------
if (byPlot & !treeList) {
grpBy <- c('YEAR', grpBy)
# Create a list of symbols for the grpBy statements
grpSyms <- rlang::syms(grpBy)
aGrpSyms <- rlang::syms(aGrpBy)
if ('SUBP_COND_CHNG_MTRX' %in% names(db)) {
# Forested land area w growth accounting
a.ga <- aData %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(PLT_CN, !!!aGrpSyms) %>%
dplyr::summarize(fa_ga = sum(SUBPTYP_PROP_CHNG * aDI_ga, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
as.data.frame()
a <- data %>%
dplyr::distinct(PLT_CN, CONDID, .keep_all = TRUE) %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(PLT_CN, !!!aGrpSyms) %>%
dplyr::summarize(fa = sum(CONDPROP_UNADJ * aDI, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
dplyr::left_join(dplyr::select(a.ga, PLT_CN, !!!aGrpSyms, fa_ga),
by = c('PLT_CN', aGrpBy)) %>%
dplyr::left_join(plt.ga, by = 'PLT_CN') %>%
dplyr::mutate(PROP_FOREST = case_when(ga == 1 ~ fa_ga,
TRUE ~ fa)) %>%
dplyr::select(PLT_CN, !!!aGrpSyms, PROP_FOREST) %>%
as.data.frame()
} else {
# Forested land area w/out growth accounting
a <- data %>%
dplyr::distinct(PLT_CN, CONDID, .keep_all = TRUE) %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(PLT_CN, !!!aGrpSyms) %>%
dplyr::summarize(PROP_FOREST = sum(CONDPROP_UNADJ * aDI, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
as.data.frame()
}
t <- data %>%
dplyr::mutate(YEAR = MEASYEAR) %>%
dplyr::distinct(PLT_CN, TRE_CN, COMPONENT, .keep_all = TRUE) %>%
dtplyr::lazy_dt() %>%
# Compute estimates at plot level
dplyr::group_by(!!!grpSyms, PLT_CN, REMPER) %>%
dplyr::summarise(RECR_TPA = sum(TPARECR_UNADJ * tDI_r, na.rm = TRUE),
MORT_TPA = sum(TPAMORT_UNADJ * tDI, na.rm = TRUE),
REMV_TPA = sum(TPAREMV_UNADJ * tDI, na.rm = TRUE),
CURR_TPA = sum(TPA_UNADJ * tDI, na.rm = TRUE),
PREV_TPA = sum(TPA_UNADJ.prev * tDI, na.rm = TRUE)) %>%
dplyr::mutate(PREV_TPA = PREV_TPA + (MORT_TPA + REMV_TPA)*REMPER) %>%
dplyr::ungroup() %>%
dplyr::mutate(CHNG_TPA = (CURR_TPA - PREV_TPA) / REMPER,
GROW_TPA = CHNG_TPA - RECR_TPA + MORT_TPA + REMV_TPA,
RECR_PERC = RECR_TPA / PREV_TPA * 100,
MORT_PERC = MORT_TPA / PREV_TPA * 100,
REMV_PERC = REMV_TPA / PREV_TPA * 100,
GROW_PERC = GROW_TPA / PREV_TPA * 100,
CHNG_PERC = CHNG_TPA / PREV_TPA * 100) %>%
dplyr::select(PLT_CN, !!!grpSyms, REMPER, RECR_TPA:REMV_TPA, GROW_TPA,
CHNG_TPA, RECR_PERC:CHNG_PERC, PREV_TPA, CURR_TPA) %>%
as.data.frame() %>%
# Rounding errors will generate tiny values, make them zero
dplyr::mutate(GROW_TPA = dplyr::case_when(abs(GROW_TPA) < 1e-5 ~ 0,
TRUE ~ GROW_TPA)) %>%
dplyr::left_join(a, by = c('PLT_CN', aGrpBy)) %>%
dplyr::distinct()
# Make it spatial if the user wants it.
if (returnSpatial) {
t <- t %>%
dplyr::filter(!is.na(LAT) & !is.na(LON)) %>%
sf::st_as_sf(coords = c('LON', 'LAT'),
crs = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')
grpBy <- grpBy[grpBy %in% c('LAT', 'LON') == FALSE]
}
out <- list(tEst = t, grpBy = grpBy, aGrpBy = aGrpBy)
} else {
# Population estimation or prep for it (treeList) ---------------------
# Create a list of symbols for the grpBy statements
aGrpSyms <- rlang::syms(aGrpBy)
# Forested area
a <- data %>%
# Will be lots of trees here, so CONDPROP listed multiple times
# Adding PROP_BASIS so we can handle adjustment factors at strata level
dplyr::distinct(PLT_CN, CONDID, .keep_all = TRUE) %>%
dplyr::mutate(fa = CONDPROP_UNADJ * aDI) %>%
dplyr::select(PLT_CN, AREA_BASIS = PROP_BASIS, CONDID, !!!aGrpSyms, fa)
if ('SUBP_COND_CHNG_MTRX' %in% names(db)) {
# Plot-level estimates -- growth accounting
a_ga <- aData %>%
dtplyr::lazy_dt() %>%
dplyr::filter(!is.na(PROP_BASIS)) %>%
dplyr::group_by(PLT_CN, PROP_BASIS, CONDID, !!!aGrpSyms) %>%
dplyr::summarize(fa_ga = sum(SUBPTYP_PROP_CHNG * aDI_ga, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
as.data.frame()
# TODO: testing
# test <- a %>%
# dplyr::left_join(dplyr::select(a_ga, PLT_CN, AREA_BASIS = PROP_BASIS,
# CONDID, !!!aGrpSyms, fa_ga),
# by = c('PLT_CN', 'AREA_BASIS', 'CONDID', aGrpBy)) %>%
# dplyr::left_join(plt.ga, by = 'PLT_CN') %>%
# dplyr::mutate(fa = case_when(ga == 1 ~ fa_ga,
# TRUE ~ fa)) %>%
# dplyr::select(PLT_CN, AREA_BASIS, CONDID, !!!aGrpSyms, fa) %>%
# dplyr::filter(fa > 0)
a <- a %>%
dplyr::left_join(dplyr::select(a_ga, PLT_CN, AREA_BASIS = PROP_BASIS,
CONDID, !!!aGrpSyms, fa_ga),
by = c('PLT_CN', 'AREA_BASIS', 'CONDID', aGrpBy)) %>%
dplyr::left_join(plt.ga, by = 'PLT_CN') %>%
dplyr::mutate(fa = case_when(ga == 1 ~ fa_ga,
TRUE ~ fa)) %>%
dplyr::select(PLT_CN, AREA_BASIS, CONDID, !!!aGrpSyms, fa) %>%
dplyr::filter(fa > 0)
}
grpSyms <- syms(grpBy)
# Tree list
t <- data %>%
dplyr::distinct(PLT_CN, TRE_CN, .keep_all = TRUE) %>%
# dtplyr::lazy_dt() %>%
dplyr::filter(!is.na(SUBPTYP_GRM)) %>%
dplyr::filter(tDI > 0 | tDI_r > 0) %>%
dplyr::mutate(TPA_UNADJ.prev = ifelse(is.na(TPA_UNADJ.prev) &
COMPONENT %in% 'INGROWTH', 0, TPA_UNADJ.prev),
TPA_UNADJ = ifelse(is.na(TPA_UNADJ) &
COMPONENT %in% c('CUT1', 'MORTALITY1',
'CUT2', 'MORTALITY2'), 0, TPA_UNADJ),
TPARECR_UNADJ = ifelse(is.na(TPARECR_UNADJ), 0, TPARECR_UNADJ)) %>%
# Compute estimates at plot level
dplyr::mutate(# Recruitment
rPlot = TPARECR_UNADJ * tDI_r,
# Mortality
mPlot = TPAMORT_UNADJ * tDI,
# Harvested
hPlot = TPAREMV_UNADJ * tDI,
# T2 trees
tPlot = TPA_UNADJ * tDI,
# T1 trees
pPlot = (TPA_UNADJ.prev * tDI) + ((mPlot + hPlot)*REMPER),
# Change
cPlot = (tPlot - pPlot) / REMPER,
# Growth
gPlot = cPlot - rPlot + mPlot + hPlot) %>%
dplyr::mutate(TREE_BASIS = case_when(SUBPTYP_GRM == 0 ~ NA_character_,
SUBPTYP_GRM == 1 ~ 'SUBP',
SUBPTYP_GRM == 2 ~ 'MICR',
SUBPTYP_GRM == 3 ~ 'MACR')) %>%
as.data.frame() %>%
dplyr::select(PLT_CN, TREE_BASIS, SUBP, TREE, !!!grpSyms, rPlot:gPlot)
if (treeList) {
tEst <- a %>%
dplyr::left_join(t, by = c('PLT_CN', aGrpBy)) %>%
dplyr::mutate(EVAL_TYP = list(c('GROW', 'MORT', 'REMV'))) %>%
dplyr::select(PLT_CN, EVAL_TYP, TREE_BASIS, AREA_BASIS,
!!!grpSyms, CONDID, SUBP, TREE,
RECR_TPA = rPlot,
MORT_TPA = mPlot,
REMV_TPA = hPlot,
GROW_TPA = gPlot,
CHNG_TPA = cPlot,
CURR_TPA = tPlot,
PREV_TPA = pPlot,
PROP_FOREST = fa)
out <- list(tEst = tEst, aEst = NULL, grpBy = grpBy, aGrpBy = aGrpBy)
} else {
# If a tree list is not desired, let's move to population estimation.
# Sum variable(s) up to plot-level and adjust for non-response
tPlt <- sumToPlot(t, pops, grpBy)
aPlt <- sumToPlot(a, pops, aGrpBy)
# Add YEAR to groups
grpBy <- c('YEAR', grpBy)
aGrpBy <- c('YEAR', aGrpBy)
# Sum variable(s) up to strata then estimation unit level
eu.sums <- sumToEU(db, tPlt, aPlt, pops, grpBy, aGrpBy, method, lambda)
tEst <- eu.sums$x
aEst <- eu.sums$y
# Have to repeat this with tree totals as the denominator
eu.sums <- sumToEU(db, dplyr::select(tPlt, -c(tPlot, pPlot)),
dplyr::select(tPlt, -c(rPlot, mPlot, hPlot, gPlot, cPlot, tPlot)),
pops, grpBy, grpBy, method, lambda)
ttEst <- eu.sums$x %>%
dplyr::select(ESTN_UNIT_CN, all_of(grpBy),
rPlot_cv_t = rPlot_cv, mPlot_cv_t = mPlot_cv, hPlot_cv_t = hPlot_cv,
gPlot_cv_t = gPlot_cv, cPlot_cv_t = cPlot_cv)
tEst <- dplyr::left_join(tEst, ttEst, by = c('ESTN_UNIT_CN', grpBy))
out <- list(tEst = tEst, aEst = aEst, grpBy = grpBy, aGrpBy = aGrpBy)
}
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.