Nothing
vitalRatesStarter <- function(x, db, grpBy_quo = NULL, polys = NULL,
returnSpatial = FALSE, bySpecies = FALSE,
bySizeClass = FALSE, landType = 'forest',
treeType = 'all', method = 'TI', lambda = 0.5,
treeDomain = NULL, areaDomain = NULL,
totals = FALSE, byPlot = FALSE, treeList = FALSE,
nCores = 1, remote, mr) {
# Read required data and prep the database ------------------------------
reqTables <- c('PLOT', 'TREE', 'COND', 'TREE_GRM_COMPONENT', 'TREE_GRM_MIDPT',
'TREE_GRM_BEGIN', 'SUBP_COND_CHNG_MTRX', 'POP_PLOT_STRATUM_ASSGN',
'POP_ESTN_UNIT', 'POP_EVAL', 'POP_STRATUM', 'POP_EVAL_TYP',
'POP_EVAL_GRP', 'PLOTGEOM')
# If remote, read in state by state. Otherwise, drop all unnecessary tables.
db <- readRemoteHelper(x, db, remote, reqTables, nCores)
# Handle TX issues: we only keep inventory years that are present in
# BOTH EAST AND WEST TX
db <- handleTX(db)
# Check some of the inputs ----------------------------------------------
# polys -----------------------------
if (!is.null(polys) &
dplyr::first(class(polys)) %in%
c('sf', 'SpatialPolygons', 'SpatialPolygonsDataFame') == FALSE) {
stop("polys must be a spatial polygons object of class sp or sf.")
}
# landType --------------------------
if (landType %in% c('timber', 'forest') == FALSE) {
stop('landType must be one of: "forest" or "timber".')
}
# treeType --------------------------
if (treeType %in% c('live', 'gs', 'all') == FALSE) {
stop('treeType must be one of: "live", "gs", or "all".')
}
# db required tables ----------------
if (any(reqTables %in% names(db) == FALSE)) {
missT <- reqTables[reqTables %in% names(db) == FALSE]
stop(paste('Tables', paste(as.character(missT), collapse = ', '),
'not found in object db.'))
}
# method ----------------------------
if (stringr::str_to_upper(method) %in% c('TI', 'SMA', 'LMA', 'EMA',
'ANNUAL') == FALSE) {
warning(paste('Method', method, 'unknown. Defaulting to Temporally Indifferent (TI).'))
}
# Other basic variable prep ---------------------------------------------
# Join PLOT with PLOTGEOM to allow plot-level geographic attributes to be used
# in grpBy statements
# First need to get rid of other columns in PLOT in PLOTGEOM.
db$PLOTGEOM <- db$PLOTGEOM %>%
dplyr::select(-STATECD, -INVYR, -UNITCD, -COUNTYCD, -PLOT, -LAT, -LON,
-dplyr::starts_with('CREATED'), -dplyr::starts_with('MODIFIED'))
db$PLOT <- db$PLOT %>%
dplyr::left_join(db$PLOTGEOM, by = 'CN')
db$TREE <- db[['TREE']] %>%
dplyr::mutate(TRE_CN = CN)
# Get a plot CN and a new pltID that gives a unique ID to each plot
# PLT_CN is UNITCD, STATECD, COUNTYCD, PLOT, and INVYR
db$PLOT <- db$PLOT %>%
dplyr::mutate(PLT_CN = CN,
pltID = stringr::str_c(UNITCD, STATECD, COUNTYCD, PLOT, sep = '_'))
# Convert grpBy to character
grpBy <- grpByToChar(db, grpBy_quo)
# Unique plot ID through time (pltID)
if (byPlot | treeList) {
grpBy <- c('pltID', grpBy)
}
# Intersect plots with polygons if polygons are given
if (!is.null(polys)) {
# Add shapefile names to grpBy
# Determine the name of the sf column. This assumes the user has not
# manually changed the "sf_column" attribute. By default, this is the
# same as the sf column. This is needed, because there is no single
# name for the sf column. It is usually geom or geometry, but that
# is not always the case.
sfCol <- attr(polys, 'sf_column')
grpBy <- c(grpBy, names(polys)[names(polys) != sfCol])
# Do the intersection
db <- arealSumPrep2(db, grpBy, polys, nCores, remote)
# If there's nothing there, skip the state
if (is.null(db)) return('no plots in polys')
}
# Update grpBy if returning spatial points.
if (byPlot & returnSpatial) {
grpBy <- c(grpBy, 'LON', 'LAT')
}
# Build a domain indicator for each observation (1 or 0) ----------------
# Land type and tree type combined
db <- typeDomain_grow(db, treeType, landType, type = 'vr')
# Spatial boundary (determine which of the plots fall within the polygons
# supplied in polys)
if (!is.null(polys)) {
db$PLOT$sp <- ifelse(!is.na(db$PLOT$polyID), 1, 0)
} else {
# If no polys, use all plots.
db$PLOT$sp <- 1
}
# User defined domain indicator for area (ex. specific forest type)
db <- udAreaDomain(db, areaDomain)
# User defined domain indicator for trees (ex. trees > 20 ft tall)
db <- udTreeDomain(db, treeDomain)
# Handle population tables ----------------------------------------------
# Filtering out all inventories that are not relevant to the current
# estimation type. If using estimator other than TI, handle the differences in
# P2POINTCNT and in assigning YEAR column (YEAR = END_INVYR if method = 'TI')
pops <- handlePops(db, evalType = c('GROW'), method, mr)
# A lot of states do their stratification in such a way that makes it impossible
# to estimate variance of annual panels with the post-stratified estimator. That is,
# the number of plots within a panel within a stratum is less than 2. When this happens
# merge strata so that all have at least two observations.
if (stringr::str_to_upper(method) %in% c('SMA', 'LMA', 'EMA', 'ANNUAL') & !byPlot) {
pops <- mergeSmallStrata(db, pops)
}
# Handle canned groups --------------------------------------------------
# Add species to groups
# Note that intData is an internal data object.
if (bySpecies) {
db$TREE <- db$TREE %>%
dplyr::left_join(dplyr::select(intData$REF_SPECIES_DEC_2024,
c('SPCD', 'COMMON_NAME', 'GENUS', 'SPECIES')),
by = 'SPCD') %>%
dplyr::mutate(SCIENTIFIC_NAME = paste(GENUS, SPECIES, sep = ' ')) %>%
dplyr::mutate_if(is.factor, as.character)
grpBy <- c(grpBy, 'SPCD', 'COMMON_NAME', 'SCIENTIFIC_NAME')
}
# Break into size classes
if (bySizeClass) {
grpBy <- c(grpBy, 'sizeClass')
db$TREE$sizeClass <- makeClasses(db$TREE$DIA, interval = 2, numLabs = TRUE)
db$TREE <- db$TREE[!is.na(db$TREE$sizeClass), ]
}
# Prep the tree list ----------------------------------------------------
# Narrow the tables to the necessary variables.
# Which grpByNames are in which table? Helps us subset below.
# grpBy names in PLOT
grpP <- names(db$PLOT)[names(db$PLOT) %in% grpBy]
# grpBy names in COND
grpC <- names(db$COND)[names(db$COND) %in% grpBy &
!c(names(db$COND) %in% grpP)]
# grpBy names in TREE
grpT <- names(db$TREE)[names(db$TREE) %in% grpBy &
!c(names(db$TREE) %in% c(grpP, grpC))]
# PLOT ------------------------------
db$PLOT <- db$PLOT %>%
# Dropping irrelevant rows and columns
dplyr::select(PLT_CN, STATECD, MACRO_BREAKPOINT_DIA, INVYR, MEASYEAR,
PLOT_STATUS_CD, dplyr::all_of(grpP), sp, COUNTYCD, PREV_PLT_CN,
REMPER) %>%
# Drop non-forested plots, and those otherwise outside our domain of interest.
dplyr::filter(PLOT_STATUS_CD == 1 & sp == 1) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% pops$PLT_CN)
# COND ------------------------------
db$COND <- db$COND %>%
dplyr::select(PLT_CN, CONDPROP_UNADJ, PROP_BASIS, COND_STATUS_CD, CONDID,
dplyr::all_of(grpC), aD, landD) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
# TREE ------------------------------
db$TREE <- db$TREE %>%
dplyr::select(PLT_CN, CONDID, PREVCOND, TRE_CN, PREV_TRE_CN, SUBP, TREE,
dplyr::all_of(grpT), tD, typeD, DIA, DRYBIO_AG, VOLCFNET,
VOLBFNET, STATUSCD) %>%
# Drop visits not used in our eval of interest
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
# TREE_GRM_COMPONENT ----------------
# Note these column names are created in typeDomain_grow to assign the
# correct value to TPAGROW_UNADJ, TPAREMV_UNADJ, TPAMORT_UNADJ, COMPONENT
db$TREE_GRM_COMPONENT <- db$TREE_GRM_COMPONENT %>%
dplyr::select(c(TRE_CN, SUBPTYP_GRM, TPAGROW_UNADJ,
TPAREMV_UNADJ, TPAMORT_UNADJ, COMPONENT)) %>%
dplyr::filter(TRE_CN %in% db$TREE$TRE_CN)
# TREE_GRM_MIDPT --------------------
db$TREE_GRM_MIDPT <- db$TREE_GRM_MIDPT %>%
dplyr::select(c(TRE_CN, DIA, VOLCFNET, VOLBFNET, DRYBIO_AG)) %>%
dplyr::filter(TRE_CN %in% db$TREE$TRE_CN)
# TREE_GRM_BEGIN --------------------
db$TREE_GRM_BEGIN <- db$TREE_GRM_BEGIN %>%
dplyr::select(c(TRE_CN, DIA, VOLCFNET, VOLBFNET, DRYBIO_AG)) %>%
dplyr::filter(TRE_CN %in% db$TREE$TRE_CN)
# SUBP_COND_CHNG_MTRX ---------------
db$SUBP_COND_CHNG_MTRX <- db$SUBP_COND_CHNG_MTRX %>%
dplyr::select(PLT_CN, PREV_PLT_CN, SUBPTYP, SUBPTYP_PROP_CHNG, PREVCOND, CONDID) %>%
dplyr::filter(PLT_CN %in% c(db$PLOT$PLT_CN, db$PLOT$PREV_PLT_CN))
# Separate area grouping names from tree grouping names
if (!is.null(polys)) {
aGrpBy <- grpBy[grpBy %in% c(names(db$PLOT), names(db$COND), names(polys))]
} else {
aGrpBy <- grpBy[grpBy %in% c(names(db$PLOT), names(db$COND))]
}
# Full tree list
data <- db$PLOT %>%
dtplyr::lazy_dt() %>%
# Grab needed columns in PLOT
dplyr::select(PLT_CN, STATECD, MACRO_BREAKPOINT_DIA, INVYR,
MEASYEAR, PLOT_STATUS_CD, PREV_PLT_CN, REMPER,
dplyr::all_of(grpP), sp) %>%
# Join with COND
dplyr::left_join(dplyr::select(db$COND, c(PLT_CN, CONDPROP_UNADJ, PROP_BASIS,
COND_STATUS_CD, CONDID,
dplyr::all_of(grpC), aD, landD)),
by = 'PLT_CN') %>%
# Join with TREE
dplyr::left_join(dplyr::select(db$TREE, c(PLT_CN, CONDID, PREVCOND, TRE_CN,
PREV_TRE_CN, SUBP, TREE,
dplyr::all_of(grpT), tD, typeD, DIA,
DRYBIO_AG, VOLCFNET, VOLBFNET,
STATUSCD)),
by = c('PLT_CN', 'CONDID')) %>%
# Join with TREE_GRM_COMPONENT
dplyr::left_join(dplyr::select(db$TREE_GRM_COMPONENT, c(TRE_CN, SUBPTYP_GRM,
TPAGROW_UNADJ, TPAREMV_UNADJ,
TPAMORT_UNADJ, COMPONENT)),
by = c('TRE_CN')) %>%
# Join with TREE_GRM_MIDPT
dplyr::left_join(dplyr::select(db$TREE_GRM_MIDPT, c(TRE_CN, DIA, VOLCFNET,
VOLBFNET, DRYBIO_AG)),
by = c('TRE_CN'), suffix = c('', '.mid')) %>%
# Join with TREE_GRM_BEGIN
dplyr::left_join(dplyr::select(db$TREE_GRM_BEGIN, c(TRE_CN, DIA, VOLCFNET,
VOLBFNET, DRYBIO_AG)),
by = c('TRE_CN'), suffix = c('', '.beg')) %>%
# Join PREV_PLT_CN with corresponding information in PLOT
dplyr::left_join(dplyr::select(db$PLOT, c(PLT_CN, dplyr::all_of(grpP), sp)),
by = c('PREV_PLT_CN' = 'PLT_CN'),
suffix = c('', '.prev')) %>%
# Join COND with previous condition
dplyr::left_join(dplyr::select(db$COND, c(PLT_CN, CONDID, landD, aD,
dplyr::all_of(grpC), COND_STATUS_CD)),
by = c('PREV_PLT_CN' = 'PLT_CN', 'PREVCOND' = 'CONDID'),
suffix = c('', '.prev')) %>%
# Join TREE with previous tree measurement
dplyr::left_join(dplyr::select(db$TREE, c(TRE_CN, dplyr::all_of(grpT), typeD,
tD, DIA, DRYBIO_AG, VOLCFNET, VOLBFNET,
STATUSCD)),
by = c('PREV_TRE_CN' = 'TRE_CN'), suffix = c('', '.prev')) %>%
# Some domain indicators
dplyr::mutate(aChng = dplyr::case_when(COND_STATUS_CD == 1 &
COND_STATUS_CD.prev == 1 &
!is.null(CONDPROP_UNADJ) ~ 1,
TRUE ~ 0),
tChng = dplyr::case_when(COND_STATUS_CD == 1 &
COND_STATUS_CD.prev == 1 ~ 1,
TRUE ~ 0),
landD.prev = dplyr::case_when(landD == 1 & landD.prev == 1 ~ 1,
TRUE ~ 0),
status = case_when(COMPONENT == 'SURVIVOR' ~ 1,
TRUE ~ 0)) %>%
# If previous attributes are unavailable for trees, default to current
dplyr::mutate(tD.prev = dplyr::case_when(is.na(tD.prev) ~ tD, TRUE ~ tD.prev),
typeD.prev = dplyr::case_when(is.na(typeD.prev) ~ typeD, TRUE ~ typeD.prev),
aD.prev = dplyr::case_when(is.na(aD.prev) ~ aD, TRUE ~ aD.prev),
sp.prev = dplyr::case_when(is.na(sp.prev) ~ sp, TRUE ~ sp.prev)) %>%
# Comprehensive domain indicators
dplyr::mutate(tDI = landD.prev * aD.prev * tD.prev * typeD.prev * sp.prev * tChng,
aDI = landD.prev * aD * sp * aChng) %>%
as.data.frame() %>%
distinct()
# Adjust tree domain indicator if only considering live trees
if (tolower(treeType) == 'live') {
data$tDI <- data$tDI * data$status
}
# Modify attributes depending on the component (mortality uses midpoint)
data <- data %>%
dplyr::mutate(DIA2 = vrAttHelper(DIA, DIA.prev, DIA.mid, DIA.beg, COMPONENT, REMPER, 2) * tDI,
DIA1 = vrAttHelper(DIA, DIA.prev, DIA.mid, DIA.beg, COMPONENT, REMPER, 1) * tDI,
BA2 = vrAttHelper(basalArea(DIA), basalArea(DIA.prev), basalArea(DIA.mid),
basalArea(DIA.beg), COMPONENT, REMPER, 2) * tDI,
BA1 = vrAttHelper(basalArea(DIA), basalArea(DIA.prev),
basalArea(DIA.mid), basalArea(DIA.beg),
COMPONENT, REMPER, 1) * tDI,
VOLCFNET2 = vrAttHelper(VOLCFNET, VOLCFNET.prev, VOLCFNET.mid,
VOLCFNET.beg, COMPONENT, REMPER, 2) * tDI,
VOLCFNET1 = vrAttHelper(VOLCFNET, VOLCFNET.prev, VOLCFNET.mid,
VOLCFNET.beg, COMPONENT, REMPER, 1) * tDI,
VOLBFNET2 = vrAttHelper(VOLBFNET, VOLBFNET.prev, VOLBFNET.mid,
VOLBFNET.beg, COMPONENT, REMPER, 2) * tDI,
VOLBFNET1 = vrAttHelper(VOLBFNET, VOLBFNET.prev, VOLBFNET.mid,
VOLBFNET.beg, COMPONENT, REMPER, 1) * tDI,
DRYBIO_AG2 = vrAttHelper(DRYBIO_AG, DRYBIO_AG.prev, DRYBIO_AG.mid,
DRYBIO_AG.beg, COMPONENT, REMPER, 2) * tDI,
DRYBIO_AG1 = vrAttHelper(DRYBIO_AG, DRYBIO_AG.prev, DRYBIO_AG.mid,
DRYBIO_AG.beg, COMPONENT, REMPER, 1) * tDI) %>%
dplyr::select(-c(DIA.mid, VOLCFNET.mid, VOLBFNET.mid, DRYBIO_AG.mid,
DIA.prev, VOLCFNET.prev, VOLBFNET.prev, DRYBIO_AG.prev,
DIA.beg, VOLCFNET.beg, VOLBFNET.beg, DRYBIO_AG.beg,
DIA, VOLCFNET, VOLBFNET, DRYBIO_AG))
# Only grab what's needed
data <- data %>%
dplyr::select(PLT_CN, TRE_CN, SUBP, CONDID, TREE, tDI, grpP, grpC, grpT,
TPAGROW_UNADJ, PROP_BASIS, SUBPTYP_GRM, PLOT_STATUS_CD,
DIA2, DIA1, BA2, BA1, DRYBIO_AG2, DRYBIO_AG1, VOLCFNET2,
VOLCFNET1, VOLBFNET2, VOLBFNET1, MEASYEAR) %>%
# Rearrange previous values as observations
tidyr::pivot_longer(cols = DIA2:VOLBFNET1,
names_to = c('.value', 'ONEORTWO'),
names_sep = -1)
# Doing area separately now for growth accounting plots
aData <- db$PLOT %>%
# Get necessary columns from PLOT
dplyr::select(c(PLT_CN, STATECD, MACRO_BREAKPOINT_DIA, INVYR, MEASYEAR,
PLOT_STATUS_CD, PREV_PLT_CN, REMPER, dplyr::all_of(grpP), sp)) %>%
# join with SUBP_COND_CHNG_MTRX
dplyr::left_join(dplyr::select(db$SUBP_COND_CHNG_MTRX, PLT_CN, PREV_PLT_CN,
SUBPTYP, SUBPTYP_PROP_CHNG, PREVCOND, CONDID),
by = c('PLT_CN', 'PREV_PLT_CN')) %>%
# Join with COND
dplyr::left_join(dplyr::select(db$COND, c(PLT_CN, CONDPROP_UNADJ, PROP_BASIS,
COND_STATUS_CD, CONDID, dplyr::all_of(grpC),
aD, landD)),
by = c('PLT_CN', 'CONDID')) %>%
# Join COND with PREV_PLT_CN and PREVCOND
dplyr::left_join(dplyr::select(db$COND, c(PLT_CN, PROP_BASIS, COND_STATUS_CD,
CONDID, dplyr::all_of(grpC), aD, landD)),
by = c('PREV_PLT_CN' = 'PLT_CN', 'PREVCOND' = 'CONDID'), suffix = c('', '.prev')) %>%
dplyr::mutate(aChng = dplyr::case_when(COND_STATUS_CD == 1 &
COND_STATUS_CD.prev == 1 &
!is.null(CONDPROP_UNADJ) &
SUBPTYP == 1 ~ 1 ,
TRUE ~ 0),
# Multiply by .25 since doing woring at plot level
SUBPTYP_PROP_CHNG = SUBPTYP_PROP_CHNG * .25) %>%
## Comprehensive domain indicator
dplyr::mutate(aDI = landD * landD.prev * aD * sp * aChng)
# Plot-level summaries --------------------------------------------------
if (byPlot & !treeList) {
grpBy <- c('YEAR', grpBy)
# Create a list of symbols for the grpBy statements
grpSyms <- rlang::syms(grpBy)
aGrpSyms <- rlang::syms(aGrpBy)
# Plot-level estimates
# Area
a <- aData %>%
dplyr::distinct(PLT_CN, CONDID, .keep_all = TRUE) %>%
# Convert to a lazy data table for quicker analysis.
dtplyr::lazy_dt() %>%
# Note the use of !!! to inject aGrpSyms back into an evaluation context.
dplyr::group_by(PLT_CN, !!!aGrpSyms) %>%
# Calculate proportion of area in the plot that meets the current area domain
dplyr::summarize(PROP_FOREST = sum(SUBPTYP_PROP_CHNG * aDI, na.rm = TRUE)) %>%
# Convert to data frame
as.data.frame()
t <- data %>%
dplyr::mutate(YEAR = MEASYEAR) %>%
dplyr::distinct(PLT_CN, SUBP, TREE, ONEORTWO, .keep_all = TRUE) %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(!!!grpSyms, PLT_CN) %>%
# Note only previous plots used in t calculation
dplyr::summarize(t = sum(TPAGROW_UNADJ[ONEORTWO == 1] * tDI[ONEORTWO == 1], na.rm = TRUE),
d = sum(DIA * TPAGROW_UNADJ * tDI, na.rm = TRUE),
ba = sum(BA * TPAGROW_UNADJ * tDI, na.rm = TRUE),
vol = sum(VOLCFNET * TPAGROW_UNADJ * tDI, na.rm = TRUE),
svol = sum(VOLBFNET * TPAGROW_UNADJ * tDI, na.rm = TRUE) / 1000,
bio = sum(DRYBIO_AG * TPAGROW_UNADJ * tDI, na.rm = TRUE) / 2000) %>%
dplyr::mutate(DIA_GROW = d / t,
BA_GROW = ba / t,
NETVOL_GROW = vol / t,
SAWVOL_GROW = svol / t,
BIO_GROW = bio / t,
BAA_GROW = ba,
NETVOL_GROW_AC = vol,
SAWVOL_GROW_AC = svol,
BIO_GROW_AC = bio,
PREV_TPA = t) %>%
dplyr::select(-c(t:bio)) %>%
as.data.frame() %>%
dplyr::left_join(a, by = c('PLT_CN', aGrpBy)) %>%
dplyr::distinct()
# Make it spatial if the user wants it.
if (returnSpatial) {
t <- t %>%
dplyr::filter(!is.na(LAT) & !is.na(LON)) %>%
sf::st_as_sf(coords = c('LON', 'LAT'),
crs = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs')
grpBy <- grpBy[grpBy %in% c('LAT', 'LON') == FALSE]
}
out <- list(tEst = t, grpBy = grpBy, aGrpBy = aGrpBy)
} else {
# Population estimation or prep for it (treeList) -----------------------
# Create a list of symbols for the grpBy statements
aGrpSyms <- rlang::syms(aGrpBy)
# Condition list
a <- aData %>%
# Will be lots of trees here, so CONDPROP is listed multiple times, the
# distinct is needed to just get those distinct ones.
# Adding PROP_BASIS so we can handle adjustment factors at strata level.
dplyr::mutate(fa = SUBPTYP_PROP_CHNG * aDI) %>%
dplyr::select(PLT_CN, AREA_BASIS = PROP_BASIS, CONDID, !!!aGrpSyms, fa)
grpSyms <- syms(grpBy)
# Tree list
t <- data %>%
dplyr::distinct(PLT_CN, SUBP, TREE, ONEORTWO, .keep_all = TRUE) %>%
dtplyr::lazy_dt() %>%
dplyr::mutate(tPlot = dplyr::case_when(ONEORTWO == 1 ~ TPAGROW_UNADJ * tDI,
TRUE ~ 0), # Previous only
dPlot = DIA * TPAGROW_UNADJ * tDI,
bPlot = BA * TPAGROW_UNADJ * tDI,
gPlot = VOLCFNET * TPAGROW_UNADJ * tDI,
sPlot = VOLBFNET * TPAGROW_UNADJ * tDI / 1000,
bioPlot = DRYBIO_AG * TPAGROW_UNADJ * tDI / 2000) %>%
# Need a code that tells us where the tree was measured
# macroplot, microplot, subplot
dplyr::mutate(TREE_BASIS = case_when(SUBPTYP_GRM == 0 ~ NA_character_,
SUBPTYP_GRM == 1 ~ 'SUBP',
SUBPTYP_GRM == 2 ~ 'MICR',
SUBPTYP_GRM == 3 ~ 'MACR')) %>%
dplyr::filter(!is.na(TREE_BASIS)) %>%
dplyr::select(PLT_CN, TREE_BASIS, SUBP, TREE, ONEORTWO, !!!grpSyms, tPlot:bioPlot) %>%
as.data.frame()
# Return a tree list ready to be handed to customPSE()
if (treeList) {
tEst <- a %>%
dtplyr::lazy_dt() %>%
dplyr::group_by(PLT_CN, CONDID, !!!aGrpSyms, AREA_BASIS) %>%
dplyr::summarize(fa = sum(fa, na.rm = TRUE)) %>%
dplyr::ungroup() %>%
as.data.frame() %>%
dplyr::left_join(t, by = c('PLT_CN', aGrpBy)) %>%
dplyr::mutate(EVAL_TYP = 'GROW') %>%
dplyr::select(PLT_CN, EVAL_TYP, TREE_BASIS, AREA_BASIS,
!!!grpSyms, CONDID, SUBP, TREE, ONEORTWO,
DIA_GROW = dPlot,
BAA_GROW = bPlot,
NETVOL_GROW = gPlot,
SAWVOL_GROW = sPlot,
BIO_GROW = bioPlot,
PREV_TPA = tPlot,
PROP_FOREST = fa)
out <- list(tEst = tEst, aEst = NULL, grpBy = grpBy, aGrpBy = aGrpBy)
} else {
# If a tree list is not desired, let's move to population estimation.
# Sum variable(s) up to plot-level and adjust for non-response
tPlt <- sumToPlot(t, pops, grpBy)
aPlt <- sumToPlot(a, pops, aGrpBy)
# Add YEAR to groups
grpBy <- c('YEAR', grpBy)
aGrpBy <- c('YEAR', aGrpBy)
# Sum variable(s) up to strata then estimation unit level
eu.sums <- sumToEU(db, tPlt, aPlt, pops, grpBy, aGrpBy, method, lambda)
tEst <- eu.sums$x
aEst <- eu.sums$y
# Have to repeat this with tree totals as the denominator
eu.sums <- sumToEU(db, dplyr::select(tPlt, -c(tPlot)), dplyr::select(tPlt, -c(dPlot:bioPlot)),
pops, grpBy, grpBy, method, lambda)
ttEst <- eu.sums$x %>%
dplyr::select(ESTN_UNIT_CN, all_of(grpBy), dPlot_cv_t = dPlot_cv,
gPlot_cv_t = gPlot_cv, bPlot_cv_t = bPlot_cv,
sPlot_cv_t = sPlot_cv, bioPlot_cv_t = bioPlot_cv)
tEst <- dplyr::left_join(tEst, ttEst, by = c('ESTN_UNIT_CN', grpBy))
out <- list(tEst = tEst, aEst = aEst, grpBy = grpBy, aGrpBy = aGrpBy)
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.