Description Usage Arguments Value Author(s) References See Also Examples
View source: R/impulseResponseVAR2.r
Evaluate the impulse responses of the VAR(2) model. It assesses the effect of an innovation (error) at one time point on the variates at future time points. In the VAR(2) model this amounts evaluating a recursive relationship in \mathbf{A}_1 and \mathbf{A}_2, the matrices of lag 1 and lag 2 autoregression coefficients.
1 | impulseResponseVAR2(A1, A2, T)
|
A1 |
A |
A2 |
A |
T |
Non-negative |
A matrix
with the impulse response of the innovation vector.
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton university press.
Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer, Berlin.
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2019), “Ridge estimation of network models from time-course omics data”, Biometrical Journal, 61(2), 391-405.
impulseResponseVAR1
, impulseResponseVARX1
, ridgeVAR2
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | # set dimensions (p=covariates, n=individuals, T=time points)
p <- 3; n <- 12; T <- 10
# set model parameters
SigmaE <- diag(p)/4
A1 <- createA(p, "clique", nCliques=1)
A2 <- createA(p, "hub", nHubs=1)
# generate time-varying covariates in accordance with VAR(2) process
Y <- dataVAR2(n, T, A1, A2, SigmaE)
# fit VAR(2) model
VAR2hat <- ridgeVAR2(Y, 1, 1, 1)
# impulse response analysis
impulseResponseVAR2(VAR2hat$A1, VAR2hat$A2, 10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.