Description Usage Arguments Value Author(s) References See Also Examples
Automatic penalty parameter selection for the VAR(1) model through maximization of the leave-one-out cross-validated (LOOCV) log-likelihood.
1 2 3 | optPenaltyVAR1(Y, lambdaMin, lambdaMax,
lambdaInit=(lambdaMin+lambdaMax)/2,
optimizer="nlm", ...)
|
Y |
Three-dimensional array containing the data. The first, second and third dimensions correspond to covariates, time and samples, respectively. The data are assumed to centered covariate-wise. |
lambdaMin |
A |
lambdaMax |
A |
lambdaInit |
A |
optimizer |
A |
... |
Additional arguments passed on to loglikLOOCVVAR1. |
A numeric
with the LOOCV optimal choice for the ridge penalty parameter.
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2017), “Ridge estimation of the VAR(1) model and its time series chain graph from multivariate time-course omics data”, Biometrical Journal, 59(1), 172-191.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | # set dimensions (p=covariates, n=individuals, T=time points)
p <- 3; n <- 4; T <- 10
# set model parameters
SigmaE <- diag(p)/4
A <- createA(3, "chain")
# generate data
Y <- dataVAR1(n, T, A, SigmaE)
# determine the optimal penalty parameter
optLambda <- optPenaltyVAR1(Y, rep(10^(-10), 2), rep(1000, 2))
# fit VAR(1) model
ridgeVAR1(Y, optLambda[1], optLambda[2])$A
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.