Description Usage Arguments Details Value Note Author(s) References See Also Examples
Ridge penalized maximum likelihood estimation of the parameters of the VAR(1), first-order vector auto-regressive, model. The VAR(1) model explains the current vector of observations \mathbf{Y}_{\ast,t+1} by a linear combination of the previous observation vector: \mathbf{Y}_{\ast,t+1} = \mathbf{A} \mathbf{Y}_{\ast,t} + \mathbf{\varepsilon}_{\ast,t+1}, where \mathbf{A} is the autoregression coefficient matrix and \mathbf{\varepsilon}_{\ast,t+1} the vector of errors (or innovations). The VAR(1)-process is assumed to have mean zero. The experimental design is allowed to be unbalanced.
1 2 3 4 5 6 7 8 | ridgeVAR1(Y, lambdaA=0, lambdaP=0,
targetA=matrix(0, dim(Y)[1], dim(Y)[1]),
targetP=matrix(0, dim(Y)[1], dim(Y)[1]), targetPtype="none",
fitA="ml", zerosA=matrix(nrow=0, ncol=2),
zerosAfit="sparse", zerosP=matrix(nrow=0, ncol=2),
cliquesP=list(), separatorsP=list(),
unbalanced=matrix(nrow=0, ncol=2), diagP=FALSE,
efficient=TRUE, nInit=100, minSuccDiff=0.001)
|
Y |
Three-dimensional |
lambdaA |
Ridge penalty parameter (positive |
lambdaP |
Ridge penalty parameter (positive |
targetA |
Target |
targetP |
Target |
fitA |
A |
targetPtype |
A |
zerosA |
A |
zerosAfit |
A |
zerosP |
A |
cliquesP |
A |
separatorsP |
A |
unbalanced |
A |
diagP |
A |
efficient |
A |
nInit |
Maximum number of iterations (positive |
minSuccDiff |
Minimum distance (positive |
The ridge ML estimator employs the following estimator of the variance of the VAR(1) process:
\frac{1}{n (\mathcal{T} - 1)} ∑_{i=1}^{n} ∑_{t=2}^{\mathcal{T}} \mathbf{Y}_{\ast,i,t} \mathbf{Y}_{\ast,i,t}^{\mathrm{T}}.
This is used when efficient=FALSE
. However, a more efficient estimator of this variance can be used
\frac{1}{n \mathcal{T}} ∑_{i=1}^{n} ∑_{t=1}^{\mathcal{T}} \mathbf{Y}_{\ast,i,t} \mathbf{Y}_{\ast,i,t}^{\mathrm{T}},
which is achieved by setting when efficient=TRUE
. Both estimators are adjusted accordingly when dealing with an unbalanced design.
A list-object with slots:
A |
Ridge ML estimate of the matrix \mathbf{A}, the |
P |
Ridge ML estimate of the inverse error covariance |
lambdaA |
Positive |
lambdaP |
Positive |
When the target of the precision matrix is specified through the targetPtype
-argument, the target is data-driven (for both fitA="ss"
and fitA="ml"
). In particular, it is updated at each iteration when fitA="ml"
.
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2017), “Ridge estimation of the VAR(1) model and its time series chain graph from multivariate time-course omics data”, Biometrical Journal, 59(1), 172-191.
loglikLOOCVVAR1
, ridgeP
, default.target
, ridgePchordal
.
1 2 3 4 5 6 7 8 9 10 11 12 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.