Description Usage Arguments Value Note Author(s) References See Also Examples
View source: R/loglikLOOCVVAR1.r
Evaluation of the (minus) leave-one-out cross-validated log-likelihood of the VAR(1) model for given choices of the ridge penalty parameters (λ_a and λ_{ω} for the autoregression coefficient matrix \mathbf{A} and the inverse error covariance matrix \mathbf{Ω}_{\varepsilon} (=\mathbf{Σ_{\varepsilon}^{-1}}), respectively). The functions also works with a (possibly) unbalanced experimental set-up. The VAR(1)-process is assumed to have mean zero.
1 | loglikLOOCVVAR1(lambdas, Y, unbalanced=matrix(nrow=0, ncol=2), ...)
|
lambdas |
A |
Y |
Three-dimensional |
unbalanced |
A |
... |
Other arguments to be passed to |
A numeric
of length one: the minus (!) LOOCV log-likelihood.
The minus LOOCV log-likelihood is returned as standard optimization procedures in R like nlminb
and constrOptim
minimize (rather then maximize). Hence, by providing the minus LOOCV log-likelihood the function loglikLOOCVVAR1
can directly used by these optimization procedures.
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2017), “Ridge estimation of the VAR(1) model and its time series chain graph from multivariate time-course omics data”, Biometrical Journal, 59(1), 172-191.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | # set dimensions (p=covariates, n=individuals, T=time points)
p <- 3; n <- 4; T <- 10
# set model parameters
SigmaE <- diag(p)/4
A <- createA(p, "chain")
# generate data
Y <- dataVAR1(n, T, A, SigmaE)
## determine optimal values of the penalty parameters
## Not run: optLambdas <- constrOptim(c(1,1), loglikLOOCVVAR1, gr=NULL,
## Not run: ui=diag(2), ci=c(0,0), Y=Y,
## Not run: control=list(reltol=0.01))$par
# ridge ML estimation of the VAR(1) parameter estimates with
# optimal penalty parameters
optLambdas <- c(0.1, 0.1)
ridgeVAR1(Y, optLambdas[1], optLambdas[2])$A
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.