Description Usage Arguments Author(s) References See Also Examples
Constructs the global or contemporaneous conditional independence graph (CIG) of the VAR(2) model, as implied by the partial correlations.
1 |
sparseA1 |
A |
sparseA2 |
A |
sparseP |
Precision |
type |
A |
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Dahlhaus (2000), “Graphical interaction models for multivariate time series”, Metrika, 51, 157-172.
Dahlhaus, Eichler (2003), “Causality and graphical models in time series analysis”, Oxford Statistical Science Series, 115-137.
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2019), “Ridge estimation of network models from time-course omics data”, Biometrical Journal, 61(2), 391-405.
CIGofVAR1
, graphVAR2
, sparsify
, sparsifyVAR2
.
1 2 3 4 5 6 7 8 9 10 11 12 13 | # specify VAR(2) model parameters
A1 <- matrix(c(-0.1, -0.3, 0,
0.5, 0, 0,
0, 0, -0.4), byrow=TRUE, ncol=3)
A2 <- matrix(c( 0, 0, 0,
0, 0, 0.2,
0, -0.4, 0), byrow=TRUE, ncol=3)
P <- matrix(c( 1, 0.5, 0,
0.5, 1, 0,
0, 0, 1), byrow=TRUE, ncol=3)
# adjacency matrix of (global) conditional independencies.
CIGofVAR2(A1, A2, P, type="global")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.