Description Usage Arguments Value Author(s) References See Also Examples
Automatic penalty parameter selection for the VARX(1) model through maximization of the leave-one-out cross-validated (LOOCV) log-likelihood.
1 2 3 | optPenaltyVARX1(Y, X, lambdaMin, lambdaMax,
lambdaInit=(lambdaMin+lambdaMax)/2,
optimizer="nlm", ...)
|
Y |
Three-dimensional |
X |
Three-dimensional |
lambdaMin |
A |
lambdaMax |
A |
lambdaInit |
A |
optimizer |
A |
... |
Additional arguments passed on to the |
A numeric
with the LOOCV optimal choice for the ridge penalty parameter.
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2019), “Ridge estimation of network models from time-course omics data”, Biometrical Journal, 61(2), 391-405.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # set dimensions (p=covariates, n=individuals, T=time points)
p <- 3; n <- 4; T <- 10
# set model parameters
SigmaE <- diag(p)/4
Ax <- createA(3, "chain")
# generate time-varying covariate data
X <- dataVAR1(n, T, Ax, SigmaE)
# (auto)regression parameter matrices of VARX(1) model
A <- createA(p, topology="clique", nonzeroA=0.1, nClique=1)
B <- createA(p, topology="hub", nonzeroA=0.1, nHubs=1)
# generate data
Y <- dataVARX1(X, A, B, SigmaE, lagX=0)
# determine the optimal penalty parameter
optLambda <- optPenaltyVARX1(Y, X, rep(10^(-10), 3), rep(1000, 3),
optimizer="nlm", lagX=0)
# fit VAR(1) model
ridgeVARX1(Y, X, optLambda[1], optLambda[2], optLambda[3], lagX=0)$A
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.