Description Usage Arguments Value Author(s) References See Also Examples
View source: R/impulseResponseVARX1.r
Evaluate the impulse responses of the VARX(1) model. It assesses the effect of an innovation (error) at one time point on the variates at future time points. In the VARX(1) model this amounts to studying powers of \mathbf{A}, the matrix of autoregression coefficients, for the innovation. For the impulse response of the time-varying covariates these powers are post-multiplied by \mathbf{B}.
1 | impulseResponseVARX1(A, B, T)
|
A |
A |
B |
A |
T |
Non-negative |
A list
-object with slots:
|
A |
|
A |
Wessel N. van Wieringen <w.vanwieringen@vumc.nl>
Hamilton, J. D. (1994). Time series analysis. Princeton: Princeton university press.
Lutkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Springer, Berlin.
Miok, V., Wilting, S.M., Van Wieringen, W.N. (2019), “Ridge estimation of network models from time-course omics data”, Biometrical Journal, 61(2), 391-405.
ridgeVAR1
, ridgeVAR2
, ridgeVARX1
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # set dimensions (p=covariates, n=individuals, T=time points)
p <- 3; n <- 12; T <- 10
# set model parameters
SigmaE <- diag(p)/4
Ax <- createA(p, "chain", nBands=1)
# generate time-varying covariates in accordance with VAR(1) process
X <- dataVAR1(n, T, Ax, SigmaE)
# set model parameters
B <- createA(p, "clique", nCliques=1)
A <- createA(p, "hub", nHubs=1)
# generate time-varying covariates in accordance with VAR(1) process
Y <- dataVARX1(X, A, B, SigmaE, lagX=0)
# fit VARX(1) model
VARX1hat <- ridgeVARX1(Y, X, 1, 1, 1, lagX=0)
# impulse response analysis
impulseResponseVARX1(VARX1hat$A, VARX1hat$B, 10)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.