Nothing
#' @title Epsilon-squared
#'
#' @description Calculates epsilon-squared
#' as an effect size statistic,
#' following a Kruskal-Wallis test,
#' or for a table with one ordinal
#' variable and one nominal variable;
#' confidence intervals by bootstrap
#'
#' @param x Either a two-way table or a two-way matrix.
#' Can also be a vector of observations of an ordinal variable.
#' @param g If \code{x} is a vector, \code{g} is the vector of observations for
#' the grouping, nominal variable.
#' @param group If \code{x} is a table or matrix, \code{group} indicates whether
#' the \code{"row"} or the \code{"column"} variable is
#' the nominal, grouping variable.
#' @param ci If \code{TRUE}, returns confidence intervals by bootstrap.
#' May be slow.
#' @param conf The level for the confidence interval.
#' @param type The type of confidence interval to use.
#' Can be any of "\code{norm}", "\code{basic}",
#' "\code{perc}", or "\code{bca}".
#' Passed to \code{boot.ci}.
#' @param R The number of replications to use for bootstrap.
#' @param histogram If \code{TRUE}, produces a histogram of bootstrapped values.
#' @param digits The number of significant digits in the output.
#' @param reportIncomplete If \code{FALSE} (the default),
#' \code{NA} will be reported in cases where there
#' are instances of the calculation of the statistic
#' failing during the bootstrap procedure.
#' @param ... Additional arguments passed to the \code{kruskal.test} function.
#'
#' @details Epsilon-squared is used as a measure of association
#' for the Kruskal-Wallis test or for a two-way
#' table with one ordinal and one nominal variable.
#'
#' Currently, the function makes no provisions for \code{NA}
#' values in the data. It is recommended that \code{NA}s be removed
#' beforehand.
#'
#' Because epsilon-squared is always positive,
#' if \code{type="perc"}, the confidence interval will
#' never cross zero, and should not
#' be used for statistical inference.
#' However, if \code{type="norm"}, the confidence interval
#' may cross zero.
#'
#' When epsilon-squared is close to 0 or very large,
#' or with small counts in some cells,
#' the confidence intervals
#' determined by this
#' method may not be reliable, or the procedure may fail.
#'
#' @author Salvatore Mangiafico, \email{mangiafico@njaes.rutgers.edu}
#'
#' @references King, B.M., P.J. Rosopa, and E.W. Minium. 2018.
#' Statistical Reasoning in the Behavioral Sciences, 7th ed. Wiley.
#'
#' \url{https://rcompanion.org/handbook/F_08.html}
#'
#' @seealso \code{\link{multiVDA}},
#' \code{\link{ordinalEtaSquared}}
#'
#' @concept effect size
#' @concept Kruskal-Wallis
#' @concept epsilon squared
#' @concept confidence interval
#'
#' @return A single statistic, epsilon-squared.
#' Or a small data frame consisting of epsilon-squared,
#' and the lower and upper confidence limits.
#'
#' @examples
#' data(Breakfast)
#' library(coin)
#' chisq_test(Breakfast, scores = list("Breakfast" = c(-2, -1, 0, 1, 2)))
#' epsilonSquared(Breakfast)
#'
#' data(PoohPiglet)
#' kruskal.test(Likert ~ Speaker, data = PoohPiglet)
#' epsilonSquared(x = PoohPiglet$Likert, g = PoohPiglet$Speaker)
#'
#' ### Same data, as matrix of counts
#' data(PoohPiglet)
#' XT = xtabs( ~ Speaker + Likert , data = PoohPiglet)
#' epsilonSquared(XT)
#'
#' @importFrom stats kruskal.test
#' @importFrom boot boot boot.ci
#'
#' @export
epsilonSquared = function (x, g=NULL, group="row", ci=FALSE, conf=0.95,
type="perc",
R=1000, histogram=FALSE, digits=3,
reportIncomplete=FALSE,
... ){
if(is.matrix(x)){x=as.table(x)}
if(is.table(x)){
Counts = as.data.frame(x)
Long = Counts[rep(row.names(Counts), Counts$Freq), c(1, 2)]
rownames(Long) = seq(1:nrow(Long))
if(group=="row"){
g=factor(Long[,1])
x=as.numeric(Long[,2])}
if(group=="column"){
g=factor(Long[,2])
x=as.numeric(Long[,1])}
}
g = factor(g)
g = droplevels(g)
n = length(g)
KW = kruskal.test(x, g, ...)
e2 = KW$statistic / (n-1)
E2 = signif(e2, digits=digits)
if(ci==TRUE){
Data = data.frame(x,g)
Function = function(input, index){
Input = input[index,]
n = length(Input$g)
if(length(unique(droplevels(Input$g)))==1){
FLAG=1
return(c(NA,FLAG))}
if(length(unique(droplevels(Input$g)))>1){
KW = kruskal.test(Input$x, Input$g, ...)
e2 = KW$statistic / (n-1)
FLAG=0
return(c(e2, FLAG))
}}
Boot = boot(Data, Function, R=R)
BCI = boot.ci(Boot, conf=conf, type=type)
if(type=="norm") {CI1=BCI$normal[2]; CI2=BCI$normal[3]}
if(type=="basic"){CI1=BCI$basic[4]; CI2=BCI$basic[5]}
if(type=="perc") {CI1=BCI$percent[4]; CI2=BCI$percent[5]}
if(type=="bca") {CI1=BCI$bca[4]; CI2=BCI$bca[5]}
if(sum(Boot$t[,2])>0 & reportIncomplete==FALSE) {CI1=NA; CI2=NA}
CI1=signif(CI1, digits=digits)
CI2=signif(CI2, digits=digits)
if(histogram==TRUE){hist(Boot$t[,1], col = "darkgray", xlab="epsilon-squared",
main="")}
}
if(ci==FALSE){names(E2) = "epsilon.squared"; return(E2)}
if(ci==TRUE){names(E2) = ""
return(data.frame(epsilon.squared=E2, lower.ci=CI1, upper.ci=CI2))}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.