Nothing
#' @title Vargha and Delaney's A
#'
#' @description Calculates Vargha and Delaney's A (VDA)
#' with confidence intervals by bootstrap
#'
#' @param formula A formula indicating the response variable and
#' the independent variable. e.g. y ~ group.
#' @param data The data frame to use.
#' @param x If no formula is given, the response variable for one group.
#' @param y The response variable for the other group.
#' @param ci If \code{TRUE}, returns confidence intervals by bootstrap.
#' May be slow.
#' @param conf The level for the confidence interval.
#' @param type The type of confidence interval to use.
#' Can be any of "\code{norm}", "\code{basic}",
#' "\code{perc}", or "\code{bca}".
#' Passed to \code{boot.ci}.
#' @param R The number of replications to use for bootstrap.
#' @param histogram If \code{TRUE}, produces a histogram of bootstrapped values.
#' @param reportIncomplete If \code{FALSE} (the default),
#' \code{NA} will be reported in cases where there
#' are instances of the calculation of the statistic
#' failing during the bootstrap procedure.
#' @param brute If \code{FALSE}, the default, the statistic is based on the
#' U statistic from the \code{wilcox.test} function.
#' If \code{TRUE}, the function will compare values
#' in the two samples directly.
#' @param verbose If \code{TRUE}, reports the proportion of ties and
#' the proportions of (Ya > Yb) and (Ya < Yb).
#' @param digits The number of significant digits in the output.
#' @param ... Additional arguments passed to the \code{wilcox.test} function.
#'
#' @details VDA is an effect size statistic appropriate
#' in cases where a Wilcoxon-Mann-Whitney test might be used.
#' It ranges from 0 to 1, with 0.5 indicating stochastic equality,
#' and 1 indicating that the first group dominates the second.
#'
#' By default, the function calculates VDA from the "W" U statistic
#' from the \code{wilcox.test} function.
#' Specifically, \code{VDA = U/(n1*n2)}.
#'
#' The input should include either \code{formula} and \code{data};
#' or \code{x}, and \code{y}. If there are more than two groups,
#' only the first two groups are used.
#'
#' Currently, the function makes no provisions for \code{NA}
#' values in the data. It is recommended that \code{NA}s be removed
#' beforehand.
#'
#' When the data in the first group are greater than
#' in the second group, VDA is greater than 0.5.
#' When the data in the second group are greater than
#' in the first group, VDA is less than 0.5.
#'
#' Be cautious with this interpretation, as R will alphabetize
#' groups in the formula interface if the grouping variable
#' is not already a factor.
#'
#' When VDA is close to 0 or close to 1,
#' or with small sample size,
#' the confidence intervals
#' determined by this
#' method may not be reliable, or the procedure may fail.
#'
#' @author Salvatore Mangiafico, \email{mangiafico@njaes.rutgers.edu}
#'
#' @references \url{https://rcompanion.org/handbook/F_04.html}
#'
#' @seealso \code{\link{cliffDelta}},
#' \code{\link{multiVDA}}
#'
#' @concept effect size
#' @concept Vargha and Delaney's A
#' @concept Wilcoxon-Mann-Whitney
#' @concept confidence interval
#'
#' @return A single statistic, VDA.
#' Or a small data frame consisting of VDA,
#' and the lower and upper confidence limits.
#'
#' @note The parsing of the formula is simplistic.
#' The first variable on the
#' left side is used as the measurement variable.
#' The first variable on the
#' right side is used for the grouping variable.
#'
#' @examples
#' data(Catbus)
#' vda(Steps ~ Gender, data=Catbus)
#'
#' @importFrom stats wilcox.test
#' @importFrom boot boot boot.ci
#'
#' @export
vda =
function(formula=NULL, data=NULL, x=NULL, y=NULL,
ci=FALSE, conf=0.95, type="perc", R=1000, histogram=FALSE,
reportIncomplete=FALSE, brute=FALSE, verbose=FALSE, digits=3,
...){
if(!is.null(formula)){
x = eval(parse(text=paste0("data","$",all.vars(formula[[2]])[1])))
g = factor(eval(parse(text=paste0("data","$",all.vars(formula[[3]])[1]))))
A = x[g==levels(g)[1]]
B = x[g==levels(g)[2]]
}
if(is.null(formula)){
A = x
B = y
x = c(A, B)
g = factor(c(rep("A", length(A)), rep("B", length(B))))
}
if(brute==FALSE){
n1 = as.numeric(length(A))
n2 = as.numeric(length(B))
U = suppressWarnings(wilcox.test(x=A, y=B, ...))$statistic
VDA = signif(U / (n1 * n2), digits=digits)
}
if(brute==TRUE){
Matrix = outer(A,B,FUN="-")
Diff = ifelse(Matrix==0, 0.5, Matrix>0)
VDA = signif(mean(Diff), digits=digits)
}
if(verbose){
Matrix = outer(A,B,FUN="-")
Out = data.frame(
Statistic = c("Proportion Ya > Yb","Proportion Ya < Yb",
"Proportion ties"),
Value = c(signif(mean(Matrix>0), digits=3),
signif(mean(Matrix<0), digits=3),
signif(mean(Matrix==0), digits=3))
)
cat("\n")
print(Out)
cat("\n")
}
if(ci==TRUE){
Data = data.frame(x,g)
Function = function(input, index){
Input = input[index,]
if(length(unique(droplevels(Input$g)))==1){
FLAG=1
return(c(NA,FLAG))}
if(length(unique(droplevels(Input$g)))>1){
if(brute==FALSE){
U = suppressWarnings(wilcox.test(x ~ g,
data=Input, ...))$statistic
n1 = length(Input$x[Input$g==levels(Input$g)[1]])
n2 = length(Input$x[Input$g==levels(Input$g)[2]])
p = U / (n1 * n2)
FLAG=0}
if(brute==TRUE){
Matrix = outer(Input$x[Input$g==levels(Input$g)[1]],
Input$x[Input$g==levels(Input$g)[2]],
FUN="-")
Diff = ifelse(Matrix==0, 0.5, Matrix>0)
p = mean(Diff)
FLAG=0}
return(c(p, FLAG))}}
Boot = boot(Data, Function, R=R)
BCI = boot.ci(Boot, conf=conf, type=type)
if(type=="norm") {CI1=BCI$normal[2]; CI2=BCI$normal[3];}
if(type=="basic"){CI1=BCI$basic[4]; CI2=BCI$basic[5];}
if(type=="perc") {CI1=BCI$percent[4]; CI2=BCI$percent[5];}
if(type=="bca") {CI1=BCI$bca[4]; CI2=BCI$bca[5];}
if(sum(Boot$t[,2])>0 & reportIncomplete==FALSE) {CI1=NA; CI2=NA}
CI1=signif(CI1, digits=digits)
CI2=signif(CI2, digits=digits)
if(histogram==TRUE){hist(Boot$t[,1], col = "darkgray",
main="", xlab="VDA")}
}
if(ci==FALSE){names(VDA)="VDA"; return(VDA)}
if(ci==TRUE){names(VDA) = ""
return(data.frame(VDA=VDA, lower.ci=CI1, upper.ci=CI2))}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.