pfr_old: Penalized Functional Regression (old version)

pfr_oldR Documentation

Penalized Functional Regression (old version)

Description

This code implements the function pfr() available in refund 0.1-11. It is included to maintain backwards compatibility.

Functional predictors are entered as a matrix or, in the case of multiple functional predictors, as a list of matrices using the funcs argument. Missing values are allowed in the functional predictors, but it is assumed that they are observed over the same grid. Functional coefficients and confidence bounds are returned as lists in the same order as provided in the funcs argument, as are principal component and spline bases. Increasing values of nbasis will increase computational time and the values of nbasis, kz, and kb in relation to each other may need to be adjusted in application-specific ways.

Usage

pfr_old(
  Y,
  subj = NULL,
  covariates = NULL,
  funcs,
  kz = 10,
  kb = 30,
  nbasis = 10,
  family = "gaussian",
  method = "REML",
  smooth.option = "fpca.sc",
  pve = 0.99,
  ...
)

Arguments

Y

vector of all outcomes over all visits

subj

vector containing the subject number for each observation

covariates

matrix of scalar covariates

funcs

matrix, or list of matrices, containing observed functional predictors as rows. NA values are allowed.

kz

can be NULL; can be a scalar, in which case this will be the dimension of principal components basis for each and every observed functional predictors; can be a vector of length equal to the number of functional predictors, in which case each element will correspond to the dimension of principal components basis for the corresponding observed functional predictors

kb

dimension of the B-spline basis for the coefficient function (note: this is a change from versions 0.1-7 and previous)

nbasis

passed to refund::fpca.sc (note: using fpca.sc is a change from versions 0.1-7 and previous)

family

generalized linear model family

method

method for estimating the smoothing parameters; defaults to REML

smooth.option

method to do FPC decomposition on the predictors. Two options available – "fpca.sc" or "fpca.face". If using "fpca.sc", a number less than 35 for nbasis should be used while if using "fpca.face",35 or more is recommended.

pve

proportion of variance explained used to choose the number of principal components to be included in the expansion.

...

additional arguments passed to gam to fit the regression model.

Value

fit

result of the call to gam

fitted.vals

predicted outcomes

fitted.vals.level.0

predicted outcomes at population level

fitted.vals.level.1

predicted outcomes at subject-specific level (if applicable)

betaHat

list of estimated coefficient functions

beta.covariates

parameter estimates for scalar covariates

varBetaHat

list containing covariance matrices for the estimated coefficient functions

Bounds

list of bounds of a pointwise 95% confidence interval for the estimated coefficient functions

X

design matrix used in the model fit

D

penalty matrix used in the model fit

phi

list of B-spline bases for the coefficient functions

psi

list of principal components basis for the functional predictors

C

stacked row-specific principal component scores

J

transpose of psi matrix multiplied by phi

CJ

C matrix multiplied J

Z1

design matrix of random intercepts

subj

subject identifiers as specified by user

fixed.mat

the fixed effects design matrix of the pfr as a mixed model

rand.mat

the fixed effects design matrix of the pfr as a mixed model

N_subj

the number of unique subjects, if subj is specified

p

number of scalar covariates

N.pred

number of functional covariates

kz

as specified

kz.adj

For smooth.option="fpca.sc", will be same as kz (or a vector of repeated values of the specified scalar kz). For smooth.option="fpca.face", will be the corresponding number of principal components for each functional predictor as determined by fpca.face; will be less than or equal to kz on an elemental-wise level.

kb

as specified

nbasis

as specified

totD

number of penalty matrices created for mgcv::gam

funcs

as specified

covariates

as specified

smooth.option

as specified

Warning

Binomial responses should be specified as a numeric vector rather than as a matrix or a factor.

Author(s)

Bruce Swihart bruce.swihart@gmail.com and Jeff Goldsmith jeff.goldsmith@columbia.edu

References

Goldsmith, J., Bobb, J., Crainiceanu, C., Caffo, B., and Reich, D. (2011). Penalized functional regression. Journal of Computational and Graphical Statistics, 20(4), 830-851.

Goldsmith, J., Crainiceanu, C., Caffo, B., and Reich, D. (2012). Longitudinal penalized functional regression for cognitive outcomes on neuronal tract measurements. Journal of the Royal Statistical Society: Series C, 61(3), 453-469.

Swihart, Bruce J., Goldsmith, Jeff; and Crainiceanu, Ciprian M. (July 2012). Testing for functional effects. Johns Hopkins University Dept. of Biostatistics Working Paper 247, available at https://biostats.bepress.com/jhubiostat/paper247/ American Statistical Association, 109(508): 1425-1439.

See Also

rlrt.pfr, predict.pfr.

Examples

## Not run: 
##################################################################
#########               DTI Data Example                 #########
##################################################################

##################################################################
# For more about this example, see Swihart et al. 2013
##################################################################

## load and reassign the data;
data(DTI2)
Y  <- DTI2$pasat ## PASAT outcome
id <- DTI2$id    ## subject id
W1 <- DTI2$cca   ## Corpus Callosum
W2 <- DTI2$rcst  ## Right corticospinal
V  <- DTI2$visit ## visit

## prep scalar covariate
visit.1.rest <- matrix(as.numeric(V > 1), ncol=1)
covar.in <- visit.1.rest 


## note there is missingness in the functional predictors
apply(is.na(W1), 2, mean)
apply(is.na(W2), 2, mean)

## fit two univariate models
pfr.obj.t1 <- pfr(Y = Y, covariates=covar.in, funcs = list(W1),     subj = id, kz = 10, kb = 50)
pfr.obj.t2 <- pfr(Y = Y, covariates=covar.in, funcs = list(W2),     subj = id, kz = 10, kb = 50)

### one model with two functional predictors using "smooth.face"
###  for smoothing predictors
pfr.obj.t3 <- pfr(Y = Y, covariates=covar.in, funcs = list(W1, W2), 
                  subj = id, kz = 10, kb = 50, nbasis=35,smooth.option="fpca.face")

## plot the coefficient function and bounds
dev.new()
par(mfrow=c(2,2))
ran <- c(-2,.5)
matplot(cbind(pfr.obj.t1$BetaHat[[1]], pfr.obj.t1$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "CCA", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t2$BetaHat[[1]], pfr.obj.t2$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "RCST", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[1]], pfr.obj.t3$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "CCA  - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")
matplot(cbind(pfr.obj.t3$BetaHat[[2]], pfr.obj.t3$Bounds[[2]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "RCST - mult.", xlab="Location", ylim=ran)
abline(h=0, col="blue")


##################################################################
# use baseline data to regress continuous outcomes on functional 
# predictors (continuous outcomes only recorded for case == 1)
##################################################################

data(DTI)

# subset data as needed for this example
cca = DTI$cca[which(DTI$visit ==1 & DTI$case == 1),]
rcst = DTI$rcst[which(DTI$visit ==1 & DTI$case == 1),]
DTI = DTI[which(DTI$visit ==1 & DTI$case == 1),]
# note there is missingness in the functional predictors
apply(is.na(cca), 2, mean)
apply(is.na(rcst), 2, mean)

# fit two models with single functional predictors and plot the results
fit.cca = pfr(Y=DTI$pasat, funcs = cca, kz=10, kb=50, nbasis=20)
fit.rcst = pfr(Y=DTI$pasat, funcs = rcst, kz=10, kb=50, nbasis=20)

par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "CCA")
matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "RCST")

# fit a model with two functional predictors and plot the results
fit.cca.rcst = pfr(Y=DTI$pasat, funcs = list(cca, rcst), kz=10, kb=30, nbasis=20)

par(mfrow = c(1,2))
matplot(cbind(fit.cca.rcst$BetaHat[[1]], fit.cca.rcst$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "CCA")
matplot(cbind(fit.cca.rcst$BetaHat[[2]], fit.cca.rcst$Bounds[[2]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "RCST")

##################################################################
# use baseline data to regress binary case-status outcomes on 
# functional predictors
##################################################################

data(DTI)

# subset data as needed for this example
cca = DTI$cca[which(DTI$visit == 1),]
rcst = DTI$rcst[which(DTI$visit == 1),]
DTI = DTI[which(DTI$visit == 1),]

# fit two models with single functional predictors and plot the results
fit.cca = pfr(Y=DTI$case, funcs = cca, family = "binomial")
fit.rcst = pfr(Y=DTI$case, funcs = rcst, family = "binomial")

par(mfrow = c(1,2))
matplot(cbind(fit.cca$BetaHat[[1]], fit.cca$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "CCA")
matplot(cbind(fit.rcst$BetaHat[[1]], fit.rcst$Bounds[[1]]),
        type = 'l', lty = c(1,2,2), col = c(1,2,2), ylab = "BetaHat", 
        main = "RCST")

##################################################################
#########              Octane Data Example               #########
##################################################################

data(gasoline)
Y = gasoline$octane
funcs = gasoline$NIR
wavelengths = as.matrix(2*450:850)

# fit the model using pfr and the smoothing option "fpca.face"
fit = pfr(Y=Y, funcs=funcs, kz=15, kb=50,nbasis=35,smooth.option="fpca.face")

matplot(wavelengths, cbind(fit$BetaHat[[1]], fit$Bounds[[1]]), 
        type='l', lwd=c(2,1,1), lty=c(1,2,2), xlab = "Wavelengths", 
        ylab = "Coefficient Function", col=1)

## End(Not run)

refund documentation built on Sept. 21, 2024, 1:07 a.m.

Related to pfr_old in refund...