R/calc_rate.R

Defines functions extract_indices linear_fit mean.calc_rate plot.calc_rate summary.calc_rate print.calc_rate calc_rate

Documented in calc_rate extract_indices linear_fit mean.calc_rate plot.calc_rate print.calc_rate summary.calc_rate

#' Calculate rate of change in oxygen over time
#'
#' Calculates rate of oxygen uptake or production from respirometry data. A rate
#' can be determined over the whole dataset, or on subsets of the data using the
#' `from` and `to` inputs to specify data regions in terms of `oxygen` or `time`
#' units or `row` numbers of the input data. Multiple rates can be extracted
#' from the same dataset by using these inputs to enter vectors of paired values
#' in the appropriate metric. See Examples.
#'
#' The function calculates rates by fitting a linear model of oxygen against
#' time, with the slope of this regression being the rate. There are no units
#' involved in `calc_rate`. This is a deliberate decision. The units of oxygen
#' concentration and time will be specified later in [`convert_rate()`] when
#' rates are converted to specific output units.
#'
#' For continuous data recordings, it is recommended a `data.frame` containing
#' the data be prepared via [`inspect()`], and entered as the `x` input. For
#' data not prepared like this, `x` can be a 2-column `data.frame` containing
#' numeric values of time (col 1) and oxygen (col 2). If multiple columns are
#' found in either an `inspect` or data frame input, only the first two columns
#' are used.
#'
#' ## Specifying regions
#'
#' For calculating rates over specific regions of the data, the `from` and `to`
#' inputs in the `by` units of `"time"` (the default), "`oxygen`", or `"row"`.
#' The `from` and `to` inputs do not need to be precise; the function will use
#' the closest values found.
#'
#' Multiple regions can be examined within the same dataset by entering `from`
#' and `to` as vectors of paired values to specify different regions. In this
#' case, `$rate` in the output will be a vector of multiple rates with each
#' result corresponding to the position of the paired `from` and `to` inputs. If
#' `from` and `to` are `NULL` (the default), the rate is determined over the
#' entire dataset.
#'
#' ## Plot
#'
#' A plot is produced (provided `plot = TRUE`) showing the original data
#' timeseries of oxygen against time (bottom blue axis) and row index (top red
#' axis), with the region specified via the `from` and `to` inputs highlighted.
#' Second panel is a close-up of the rate region with linear model coefficients.
#' Third and fourth panels are summary plots of fit and residuals.
#'
#' ## Additional plotting options
#'
#' If multiple rates have been calculated, by default the first (`pos = 1`) is
#' plotted. Others can be plotted by changing the `pos` input either in the main
#' function call, or by plotting the output, e.g. `plot(object, pos = 2)`. In
#' addition, each sub-panel can be examined individually by using the `panel`
#' input, e.g. `plot(object, panel = 2)`.
#'
#' Console output messages can be suppressed using `quiet = TRUE`. If axis
#' labels (particularly y-axis) are difficult to read, `las = 2` can be passed
#' to make axis labels horizontal, and `oma` (outer margins, default `oma =
#' c(0.4, 1, 1.5, 0.4)`), and `mai` (inner margins, default `mai = c(0.3, 0.15,
#' 0.35, 0.15)`) used to adjust plot margins.
#'
#' ## S3 Generic Functions
#'
#' Saved output objects can be used in the generic S3 functions `print()`,
#' `summary()`, and `mean()`.
#'
#' - `print()`: prints a single result, by default the first rate. Others can be
#' printed by passing the `pos` input. e.g. `print(x, pos = 2)`
#'
#' - `summary()`: prints summary table of all results and metadata, or those
#' specified by the `pos` input. e.g. `summary(x, pos = 1:5)`. The summary can
#' be exported as a separate dataframe by passing `export = TRUE`.
#'
#' - `mean()`: calculates the mean of all rates, or those specified by the `pos`
#' input. e.g. `mean(x, pos = 1:5)` The mean can be exported as a separate value
#' by passing `export = TRUE`.
#'
#' ## More
#'
#' For additional help, documentation, vignettes, and more visit the `respR`
#' website at <https://januarharianto.github.io/respR/>
#'
#' @return Output is a `list` object of class `calc_rate` containing input
#'   parameters and data, various summary data, metadata, linear models, and the
#'   primary output of interest `$rate`, which can be background adjusted in
#'   [`adjust_rate`] or converted to units in [`convert_rate`].
#'
#' @param x object of class `inspect` or `data.frame`. This is the timeseries of
#'   paired values of oxygen against time from which to calculate rates.
#' @param from numeric value or vector. Defaults to `NULL`. The start of the
#'   region(s) over which you want to calculate the rate in the units specified
#'   in `by`. If a vector, each value must have a paired value in `to`.
#' @param to numeric value or vector. Defaults to `NULL`. The end of the
#'   region(s) over which you want to calculate the rate in the units specified
#'   in `by`. If a vector, each value must have a paired value in `from`.
#' @param by string. `"time"`, `"row"`, or `"oxygen"`. Defaults to `"time"`.
#'   This is the method used to subset the data region between `from` and `to`.
#' @param plot logical. Defaults to `TRUE`. Plot the results.
#' @param ... Allows additional plotting controls to be passed, such as `pos`,
#'   `panel`, and `quiet = TRUE`.
#'
#' @importFrom data.table data.table rbindlist
#' @import utils
#' @import stats
#' @import graphics
#' @import grDevices
#'
#' @export
#'
#' @examples
#' # Subset by 'time' (the default)
#' inspect(sardine.rd, time = 1, oxygen = 2, plot = FALSE) %>%
#'   calc_rate(from = 200, to = 1800)
#'
#' # Subset by oxygen
#' inspect(sardine.rd, time = 1, oxygen = 2, plot = FALSE) %>%
#'   calc_rate(94, 91, by = "oxygen")
#'
#' # Subset by row
#' inspect(sardine.rd, time = 1, oxygen = 2, plot = FALSE) %>%
#'   calc_rate(1000, 2000, by = "row")
#'
#' # Use a data frame input, and calculate rate from multiple regions by
#' # using a vector in the 'from' and 'to' inputs
#' x <- calc_rate(intermittent.rd,
#'                from = c(200,2300,4100),
#'                to = c(1800,3200,4600),
#'                by = 'time',
#'                plot = FALSE)
#' # Print and summary of results
#' print(x)
#' summary(x)
#' # Plot the third of these results
#' plot(x, pos = 3)
#' # Plot only the timeseries plot and hide the legend
#' plot(x, pos = 3, panel = 1, legend = FALSE)

calc_rate <- function(x, from = NULL, to = NULL, by = "time", plot = TRUE, ...) {

  ## Save function call for output
  call <- match.call()
  ## Save inputs for output
  inputs <- list(x = x,
                 from = from,
                 to = to,
                 by = by,
                 plot = plot)

  # Validate inputs
  ## verify by input
  by <- by_val(by, msg = "calc_rate:")

  # Extract data.frame from inspect functions
  if(any(class(x) %in% "inspect")) df <- x$dataframe else
    df <- x

  # By now, df input must be a data frame object - but check
  if(!is.data.frame(df)) stop("calc_rate: Input must be a 'data.frame' or 'inspect' object.", call. = FALSE)
  # In edge cases if a 1 row df is entered it gives an obscure message, so this is more clear
  if(nrow(df) == 1)  stop("calc_rate: Input data contains only 1 row. Please check inputs.", call. = FALSE)

  # Format as data.table
  df <- data.table::data.table(df)
  if (length(df) > 2) {
    message("calc_rate: Multi-column dataset detected in input. Selecting first two columns by default.\n  If these are not the intended data, inspect() or subset the data frame columns appropriately before running calc_rate()")
    df <- df[, 1:2]
  }

  # Apply NULL defaults
  if(is.null(from)){
    if(by == "time") from <- min(df[[1]])
    if(by == "row") from <- 1
    if(by == "oxygen") from <- df[[2]][1] # first oxygen value
  }
  if(is.null(to)){
    if(by == "time") to <- max(df[[1]])
    if(by == "row") to <- nrow(df)
    if(by == "oxygen") to <- df[[2]][nrow(df)] # last oxygen value
  }

  # from/to checks  ---------------------------------------------------------

  # Ensure "from" and "to" are same length:
  if (length(from) != length(to)) stop("calc_rate: 'from' and 'to' have unequal lengths.", call. = FALSE)
  # values of "from" and "to" can't be equal (for any metric):
  if(any(mapply(function(p,q) p == q,
                p = from,
                q = to))) stop("calc_rate: some 'from' values are equal to the paired values in 'to'.", call. = FALSE)

  if(by == "time"){
    ## all 'from' should be less than its paired 'to'
    if(any(mapply(function(p,q) p > q,
                  p = from,
                  q = to))) stop("calc_rate: some 'from' time values are later than the paired values in 'to'.", call. = FALSE)

    t_range <- range(df[[1]], na.rm = TRUE)
    if(any(sapply(from, function(z) z > t_range[2])))
      stop("calc_rate: some 'from' time values are higher than the values present in 'x'.", call. = FALSE)
    if(any(sapply(to, function(z) z < t_range[1])))
      stop("calc_rate: some 'to' time values are lower than the values present in 'x'.", call. = FALSE)
    if(any(sapply(from, function(z) z < t_range[1])))
      message("calc_rate: some 'from' time values are lower than the values present in 'x'. The lowest time value will be used instead.")
    if(any(sapply(to, function(z) z > t_range[2])))
      message("calc_rate: some 'to' time values are higher than the values present in 'x'. The highest time value will be used instead.")
  }

  if(by == "row"){
    if(any(mapply(function(p,q) p > q,
                  p = from,
                  q = to))) stop("calc_rate: some 'from' row numbers are higher than the paired values in 'to'.", call. = FALSE)

    r_range <- range(1:nrow(df))
    if(any(sapply(from, function(z) z > r_range[2])))
      stop("calc_rate: some 'from' row numbers are beyond the number of rows present in 'x'.", call. = FALSE)
    if(any(sapply(to, function(z) z > r_range[2])))
      message("calc_rate: some 'to' row numbers are higher than the number of rows present in 'x'. The final row number will be used instead.")
  }

  if(by == "oxygen"){
    o_range <- range(df[[2]], na.rm = TRUE)

    ## can't have 'from' and 'to' both below or both above oxygen range
    if(any(mapply(function(p,q) p < o_range[1] && q < o_range[1],
                  p = from,
                  q = to))) stop("calc_rate: some paired 'from' and 'to' values are both below the range of oxygen data in 'x'.", call. = FALSE)
    if(any(mapply(function(p,q) p > o_range[2] && q > o_range[2],
                  p = from,
                  q = to))) stop("calc_rate: some paired 'from' and 'to' values are both above the range of oxygen data in 'x'.", call. = FALSE)

    ## if any 'from' or 'to' are above or below oxygen range
    if(any(sapply(from, function(z) z > o_range[2]))) {
      message("calc_rate: some 'from' oxygen values are higher than the values in 'x'. The highest available value will be used instead.")
    } else if(any(sapply(from, function(z) z < o_range[1]))) {
      message("calc_rate: some 'from' oxygen values are lower than the values in 'x'. The lowest available value will be used instead.")
    }

    if(any(sapply(to, function(z) z > o_range[2]))) {
      message("calc_rate: some 'to' oxygen values are higher than the values in 'x'. The highest available value will be used instead.")
    } else if(any(sapply(to, function(z) z < o_range[1]))) {
      message("calc_rate: some 'to' oxygen values are lower than the values in 'x'. The lowest available value will be used instead.")
    }
  }

  # Subset and run lm -------------------------------------------------------
  # Subset the data:
  dt <- lapply(1:length(from), function(z) truncate_data(df, from[z], to[z], by))

  # Perform lm on data and extract coefficients
  coefs <- lapply(1:length(to), function(z) linear_fit(dt[[z]]))

  # Extract row, time and DO indices from subsets
  indices <- lapply(1:length(dt), function(z) extract_indices(df, dt, z))

  # Extract row, time and DO indices from subsets and add to results
  rdt <- data.table::rbindlist(lapply(1:length(to), function(z)
    cbind(coefs[[z]], indices[[z]])))

  # Include twopoint method in table
  # And `rate` at end on its own in case people use 2pt by mistake
  rdt[, rate.2pt := ((endoxy - oxy) / (endtime - time))]
  rdt[, rate := slope_b1]

  # Extract slope_b1
  rate <- rdt[,slope_b1]


  # Generate output ---------------------------------------------------------
  out <- list(
    call = call,
    inputs = inputs,
    dataframe = df,
    subsets = dt,
    summary = cbind(rep = NA,
                    rank = 1:nrow(rdt),
                    rdt),
    rate.2pt = rdt$rate.2pt,
    rate = rate
  )

  class(out) <- "calc_rate"

  # Plot if TRUE
  if (plot) plot(out, quiet = TRUE, ...)

  return(out)
}

#' Print calc_rate objects
#' @param x calc_rate object
#' @param pos integer. Which result to print.
#' @param ... Pass additional inputs
#' @keywords internal
#' @return Print to console. No returned value.
#' @export
print.calc_rate <- function(x, pos = 1, ...) {
  cat("\n# print.calc_rate # ---------------------")
  if(length(pos) > 1)
    stop("print.calc_rate: 'pos' must be a single value. To examine multiple results use summary().", call. = FALSE)
  if(pos > length(x$rate))
    stop("print.calc_rate: Invalid 'pos' rank: only ", length(x$rate), " rates found.", call. = FALSE)
  cat("\nRank", pos, "of", length(x$rate), "rates:")
  cat("\nRate:", x$rate[pos], "\n")
  cat("\n")
  if(length(x$rate) > 1) cat("To see other results use 'pos' input. \n")
  cat("To see full results use summary().\n")
  cat("-----------------------------------------\n")

  return(invisible(x))
}

#' Summarise calc_rate objects
#' @param object calc_rate object
#' @param pos integer(s). Which summary row(s) to print.
#' @param export logical. Export summary table as data frame.
#' @param ... Pass additional inputs
#' @keywords internal
#' @return Print to console. No returned value.
#' @export
#' @importFrom data.table data.table
summary.calc_rate <- function(object, pos = NULL, export = FALSE, ...) {

  if(!is.null(pos) && any(pos > length(object$rate)))
    stop("summary.calc_rate: Invalid 'pos' rank: only ", length(object$rate), " rates found.", call. = FALSE)

  cat("\n# summary.calc_rate # -------------------\n")
  if(is.null(pos)) {
    pos <- 1:nrow(object$summary)
    cat("Summary of all rate results:")
    cat("\n")
    cat("\n")
  } else{
    cat("Summary of rate results from entered 'pos' rank(s):")
    cat("\n")
    cat("\n")
  }

  out <- object$summary[pos,]
  print(out, nrows = 50, class = FALSE)
  cat("-----------------------------------------\n")

  if(export)
    return(invisible(out)) else
      return(invisible(object))
}

#' Plot calc_rate objects
#' @param x calc_rate object
#' @param pos integer. Which result to plot.
#' @param panel integer. Which panel to plot individually.
#' @param quiet logical. Suppress console output.
#' @param legend logical. Suppress labels and legends.
#' @param ... Pass additional plotting parameters
#' @keywords internal
#' @return A plot. No returned value.
#' @export
plot.calc_rate <- function(x, pos = 1, quiet = FALSE, panel = NULL,
                           legend = TRUE, ...) {

  parorig <- par(no.readonly = TRUE) # save original par settings
  on.exit(par(parorig)) # revert par settings to original

  nres <- length(x$rate) # number of rates

  if(is.null(pos)) pos <- 1
  if(length(pos) > 1)
    stop("plot.calc_rate: 'pos' should be a single value.", call. = FALSE)
  if(pos > nres || pos < 1)
    stop("plot.calc_rate: Invalid 'pos' rank: only ", nres, " rates found.", call. = FALSE)

  # set plot layout based on 'panel'
  if(is.null(panel)) {
    panel <- 1:4
    mfrow = c(2,2)
  } else {
    mfrow = c(1,1)
  }
  if(any(panel > 4))
    stop("plot.calc_rate: 'panel' input should be 1 to 4 or 'NULL' for all.", call. = FALSE)

  if(!quiet) {
    cat("\n# plot.calc_rate # ----------------------\n")
    if(pos == 1 && nres == 1)
      cat(glue::glue("plot.calc_rate: Plotting rate from position {pos} of {nres} ..."), sep="\n")
    if(pos == 1 && nres > 1)
      cat(glue::glue("plot.calc_rate: Plotting rate from position {pos} of {nres} ... \nTo plot others use 'pos'"), sep="\n")
    if(pos > 1)
      cat(glue::glue('plot.calc_rate: Plotting rate from position {pos} of {nres} ...'), sep="\n")
  }

  df  <- x$dataframe
  sdf <- x$subsets[[pos]]
  fit <- lm(sdf[[2]] ~ sdf[[1]], sdf)
  rsq <- signif(summary(fit)$r.squared, 3)

  # Apply default plotting params
  par(mfrow = mfrow,
      oma = oma_def,
      mai = mai_def,
      las = las_def,
      mgp = mgp_def,
      tck = tck_def,
      pch = pch_def,
      ps = 10,
      cex = 1,
      cex.main = 1)
  # allows params overriding defaults to be passed
  par(...)

  ## need row numbers for subp plot
  rownums <- x$summary$row[pos]:x$summary$endrow[pos]

  if(1 %in% panel) multi.p(df, sdf, legend = legend)  # full timeseries with lmfit
  if(2 %in% panel) sub.p(sdf, rsq = signif(rsq, 3), rownums = rownums,
                          legend = legend) # subset timeseries
  if(3 %in% panel) residual.p(fit)  # residual plot
  if(4 %in% panel) qq.p(fit)  # qqplot
  mtext(glue::glue("calc.rate: Rank {pos} of {nres} Total Rates"),
        outer = TRUE, cex = 1.2, line = 0.3, font = 2)

  if(!quiet) cat("-----------------------------------------\n")

  return(invisible(x))
}

#' Average calc_rate object rates
#' @param x calc_rate object
#' @param pos integer(s). Which result(s) to average.
#' @param export logical. Export averaged values as single value.
#' @param ... Pass additional inputs
#' @keywords internal
#' @return Print to console. No returned value.
#' @export
mean.calc_rate <- function(x, pos = NULL, export = FALSE, ...){

  cat("\n# mean.calc_rate # ----------------------\n")
  if(!is.null(pos) && any(pos > length(x$rate)))
    stop("mean.calc_rate: Invalid 'pos' rank: only ", length(x$rate), " rates found.", call. = FALSE)
  if(is.null(pos)) {
    pos <- 1:length(x$rate)
    cat("Mean of all rate results:")
    cat("\n")
  } else{
    cat("Mean of rate results from entered 'pos' ranks:")
    cat("\n")
  }
  if(length(x$rate[pos]) == 1)
    message("Only 1 rate found. Returning mean rate anyway...")
  cat("\n")

  n <- length(x$rate[pos])
  out <- mean(x$rate[pos])
  cat("Mean of", n, "output rates:\n")
  print(out)
  cat("-----------------------------------------\n")

  if(export)
    return(invisible(out)) else
      return(invisible(x))
}

# linear_fit --------------------------------------------------------------

#' Perform a linear regression on a data frame
#'
#' This is an internal function. Performs `lm` on a data frame object and returns
#' its coefficients.
#'
#' @param dt data frame.
#'
#' @keywords internal
#'
#' @return A data frame object of `lm()` coefficients.
linear_fit <- function(dt) {
  fit <- lm(dt[[2]] ~ dt[[1]], dt)
  b0   <- coef(fit)[[1]]
  b1   <- coef(fit)[[2]]  # slope
  rsq  <- signif(summary(fit)$r.squared, 3) # r-square
  out  <- data.frame(intercept_b0 = b0, slope_b1 = b1, rsq)
  return(out)
}


# extract_indices ---------------------------------------------------------

#' Extract row, time and DO indices from a subset dataframe
#'
#' This is an internal function. Extracts row, time and DO values from a data
#' subset in a list.
#'
#' @param x data frame.
#' @param subsets list of data frames.
#' @param n numeric. Choose which subset in the list to extract data from.
#'
#' @importFrom data.table data.table
#'
#' @keywords internal
#'
#' @return A `data.table`` object.
extract_indices <- function(x, subsets, n) {
  # This grabs the first and last-row data
  fl <- subsets[[n]][, .SD[c(1, .N)]]
  # Add row indices while flattening data into a row:
  out <- data.table::data.table(
    row = match(fl[[1]][1], x[[1]]),
    ## endrow - we want LAST match here, since this matches by=time behaviour
    ## fixes row refs if there are duplicate times
    endrow = tail(which(fl[[1]][2] == x[[1]]), 1),
    time = fl[[1]][1],
    endtime =  fl[[1]][2],
    oxy =fl[[2]][1],
    endoxy = fl[[2]][2])
  return(out)
}

Try the respR package in your browser

Any scripts or data that you put into this service are public.

respR documentation built on May 29, 2024, 7:14 a.m.