R/infoMxop.r

Defines functions infoMxop

Documented in infoMxop

#' Operate on Information Matrices
#'
#' Processes four types of information matrices: ones produced by the `SparseM` package for the `orm` function in `rms` version 6.9-0 and earlier, by the `Matrix` package for version 7.0-0 of `rms` using a tri-band diagonal matrix for the intercepts, using `Matrix` for general sparse information matrices for intercepts (when any interval-censored observations exist), or plain matrices.  For `Matrix`, the input information matrix is a list with three elements: `a` containing in two columns the diagonal and superdiagonal for intercepts (when there is no interval censoring) or a list with three elements `row`, `col`, `a` (when there is interval censoring), `b`, a square matrix for the covariates, and `ab` for intercepts x covariates.  If nothing else is specified, the assembled information matrix is returned for `Matrix`, or the original `info` otherwise.  If `p=TRUE`, the number of parameters in the model (number of rows and columns in the whole information matrix) is returned.  If `i` is given, the `i` elements of the inverse of `info` are returned, using efficient calculation to avoid inverting the whole matrix.  Otherwise if `invert=TRUE` or `B` is given without `i`, the efficiently (if `Matrix` or `SparseM`) inverted matrix is returned, or the matrix multiplication of the inverse and `B`.  If both `i` and `B` are given, what is returned is the `i` portion of the inverse of the information matrix, matrix multiplied by `B`.  This is done inside `solve()`.
#' 
#' When only variance-covariance matrix elements corresponding to the non-intercepts are desired, specify
#' `i='x'` or `i=(k + 1) : nv` where `nv` is the number of intercepts and slopes combined.  `infoMxop` computes the needed covariance matrix very quickly in this case.
#' When inverting `info`, if `info` has a `'scale'` attribute with elements `mean` and `sd`, the scaling is reversed after inverting `info`.
#'
#' @param info an information matrix object
#' @param i integer vector specifying elements returned from the inverse.  You an also specify `i='x'` to return non-intercepts or `i='i'` to return intercepts.
#' @param invert set to `TRUE` to invert `info` (implied when `i` or `B` is given)
#' @param B multiplier matrix
#' @param np set to `TRUE` to just fetch the total number of parameters (intercepts + betas)
#' @param tol tolerance for matrix inversion singularity
#' @param abort set to `FALSE` to run the `solve` calculation through `try()` without aborting; the user will detect that the operation did not success by examinine `inherits(result, 'try-error')` for being `TRUE`.
#'
#' @returns a single integer or a matrix
#' @export
#' @md
#' @author Frank Harrell
#'
#' @examples
#' \dontrun{
#' f <- orm(y ~ x)
#' infoMxop(f$info.matrix)   # assembles 3 pieces
#' infoMxop(v, i=c(2,4))     # returns a submatrix of v inverse
#' infoMxop(f$info.matrix, i='x')  # sub-covariance matrix for just the betas
#' }
infoMxop <- function(info, i, invert=! missing(i) || ! missing(B),
                     B, np=FALSE, tol=.Machine$double.eps, abort=TRUE) {
  if(! missing(i) && ! invert)
    stop('i is irrelevant if invert=FALSE')
  Bp <- ! missing(B) 
  if(Bp) B <- Matrix::Matrix(B)
  
  xname <- iname <- name <- sc <- NULL
  if(is.matrix(info)) name <- colnames(info)

  type <- 'plain'
  t3   <- FALSE
  if(inherits(info, 'matrix.csr')) type <- 'SparseM'
  else if(is.list(info) && all(c('a', 'b', 'ab') %in% names(info))) {
    # Object created by lrm or orm
      type  <- 'Matrix'
      t3    <- TRUE
      a     <- info$a   # intercepts
      b     <- info$b   # betas
      ab    <- info$ab  # intercepts x betas
      xname <- info$xname
      iname <- info$iname
      sc    <- info$scale
      k     <- nrow(ab) # no. of intercepts = nrow(a)
      p     <- ncol(ab) # no. of betas
      if(np) return(k + p)
      # Simplify if only one intercept, no need for sparseness
      a <- if(k == 1) if(is.list(a)) a$a[1] else a[1, 1]
      else if(is.list(a)) Matrix::sparseMatrix(a$row, a$col, x=a$a, dims=c(k, k), symmetric=TRUE)
      else Matrix::bandSparse(k, k=c(0,1), diagonals=a, symmetric=TRUE)
      info <- rbind(cbind(a, ab), cbind(t(ab), b))
      name <- c(iname, xname)
      dimnames(info) <- list(name, name)
    } else if(inherits(info, 'Matrix')) type <- 'Matrix'
    else type <- 'plain'

  nv <- ncol(info)
  if(np) return(nv)
  if(! invert) return(info)

  # ChatGPT confirmed that extracting submatrices of t(trans) x V x trans equals
  # operating on a submatrix of trans: https://chatgpt.com/share/676e6cb9-bde0-800a-b5f6-0b2c53393ae1
  if(length(sc)) {
    # t(trans) %*% covariance matrix %*% trans = rescaled cov matrix
    trans <- rbind(cbind(Matrix::Diagonal(k), Matrix::Matrix(0., k, p)),
                   cbind(Matrix::Matrix(- rep(sc$mean / sc$sd, k), ncol=k),
                  Matrix::Diagonal(x = 1. / as.vector(sc$sd))))
  }

  tryit <- if(abort) function(x) x else function(x) try(x)
  solv  <- switch(type,
                  plain   =          solve,
                  SparseM = SparseM::solve,
                  Matrix  = Matrix ::solve)
  asm   <- switch(type,
                  plain   =          as.matrix,
                  SparseM = SparseM::as.matrix,
                  Matrix  = Matrix ::as.matrix)
  if(missing(i)) {
    v <- if(Bp) tryit(asm(solv(info, B, tol=tol))) else tryit(asm(solv(info, tol=tol)))
    if(length(sc)) v <- t(trans) %*% v %*% trans
  }
  else {
    # User has specied i, a vector of indexes of rows/columns of inverse to keep
    if(is.character(i) && length(i) == 1) {
      if(! t3) k <- attr(info, 'intercepts')
      if(! length(k)) 
        stop("may only specify i='i' or 'x' when operating on the default ",
             "lrm or orm 3-element information matrix or when info has ",
             "an intercepts attribute")
      i <- switch(i,
                  i = 1 : k,
                  x = (k + 1) : nv)
    }
    if((length(i) == nv - k) && all(sort(i) == (k + 1) : nv)) {
      # It's very quick to only get the beta components of the inverse
      # It's slower to do likewise for just the intercept components; best to
      # just use the i=1:k for that
      M <- b - Matrix::t(ab) %*% solv(a, ab, tol=tol)
      v <- if(Bp) solv(M, B, tol=tol) else solv(M, tol=tol)
      if(length(sc)) {
        w <- trans[i, i, drop=FALSE]
        v <- t(w) %*% v %*% w
      }
    if(! Bp) dimnames(v) <- list(name[i], name[i])
    return(v)
    }

    # Construct w = a p x r matrix where r = no. desired inverse elements
    # jth column of w has a 1 in i(j) row
    l <- length(i)
    w <- matrix(0., nv, l)
    w[cbind(i, 1 : l)] <- 1
    if(type == 'Matrix') w <- Matrix::Matrix(w)
    if(Bp) w <- w %*% B
    v <- tryit(asm(solv(info, w, tol=tol)[i, , drop=FALSE]))
    if(length(sc)) {
      w <- trans[i, i, drop=FALSE]
      v <- t(w) %*% v %*% w
    }
    if(! Bp) dimnames(v) <- list(name[i], name[i])
  }
  v
}

Try the rms package in your browser

Any scripts or data that you put into this service are public.

rms documentation built on April 12, 2025, 1:18 a.m.