R/validate.cph.s

Defines functions dxy.cens validate.cph

Documented in dxy.cens validate.cph

validate.cph <- function(fit, method="boot",
                         B=40, bw=FALSE, rule="aic", type="residual",
                         sls=.05, aics=0, force=NULL, estimates=TRUE, pr=FALSE,
                         dxy=TRUE, u, tol=1e-9, ...)
{
  atr <- fit$Design

  need.surv <- dxy & any(atr$assume.code == 8)
  
  if(need.surv & missing(u))
    stop("Presence of strata -> survival estimates needed for dxy; u omitted")
  
  modtype <- fit$method
  
  discrim <- function(x, y, strata, fit, iter, evalfit=FALSE, dxy=TRUE,
                      need.surv=FALSE, u, modtype, pr=FALSE, ...)
    {
      n <- nrow(y)
      if(! length(x) || length(unique(x)) == 1) {
        Dxy <- 0
        slope <- 1
        D <- 0
        U <- 0
        R2 <- 0
      }
      else {
        x <- as.matrix(x)
        dimnames(x) <- list(as.character(1:nrow(x)),as.character(1:ncol(x)))
        if(evalfit) {	#Fit was for training sample
          lr  <- -2 * (fit$loglik[1] - fit$loglik[2])
          ll0 <- -2 * fit$loglik[1]
          slope <- 1
          D <- (lr - 1)/ll0
          U <- -2/ll0
          R2.max <- 1 - exp(-ll0/n)
          R2 <- (1 - exp(-lr/n))/R2.max
          g  <- GiniMd(x)
        }
          else {
            type <- attr(y, "type")
            storage.mode(x) <- "double"
            f <- coxphFit(x=x, y=y, strata=strata, iter.max=10, eps=.0001,
                          method=modtype, type=type)
            if(f$fail)
              stop('fit failure in discrim,coxphFit')
            
            ##x is x*beta from training sample
            lr <- -2 * (f$loglik[1]-f$loglik[2])
            ll0 <- -2 * f$loglik[1]
            slope <- f$coef[1]
            D <- (lr - 1)/ll0
            R2.max <- 1 - exp(-ll0/n)
            R2 <- (1 - exp(-lr/n))/R2.max
            f.frozen <- coxphFit(x=x, y=y, strata=strata,
                                 iter.max=0, eps=.0001,
                                 method=modtype, init=1, type=type)
            if(f.frozen$fail) stop('fit failure in discrim for f.frozen')
            U <- -2 * (f.frozen$loglik[2] - f$loglik[2]) / ll0
            g <- GiniMd(slope*x)
          }
      }
      
      Q <- D - U
      z   <- c(R2,  slope,    D,  U,   Q,   g)
      nam <- c("R2","Slope", "D", "U", "Q", "g")
      if(dxy) {
        if(need.surv) {
          attr(x, "strata") <- strata
          x <- survest(fit, linear.predictors=x, times=u,
                       conf.int=FALSE)$surv
          dxytype <- 'time'
        } else dxytype <- 'hazard'
        Dxy <- dxy.cens(x, y, type=dxytype)["Dxy"]
        z <- c(Dxy, z)
        nam <- c("Dxy", nam)
      }
      names(z) <- nam
      z
    }
  
  cox.fit <- function(x, y, strata, u, need.surv=FALSE, modtype, tol=1e-9,
                      ...) {
    if(! length(x))
      return(list(fail=FALSE,coefficients=numeric(0)))
    
    if(! need.surv)
      u <- 0
    
    ##	coxph(x,y,e,pr=F,surv=need.surv)
    if(! need.surv) {
      type <- attr(y, 'type')
      storage.mode(x) <- "double"
      x <- as.matrix(x)
      dimnames(x) <- list(as.character(1:nrow(x)),as.character(1:ncol(x)))
      
      f <- coxphFit(x=x, y=y, strata=strata, iter.max=10, eps=.0001,
                    method=modtype, toler.chol=tol, type=type)
      
      if(f$fail) return(f)
      
      if(any(is.na(f$coef))) {
        cat('Singularity in coxph.fit. Coefficients:\n'); print(f$coef)
        return(list(fail=TRUE))
      }
      return(f)
    }
    
    x <- x      #Don't want lazy evaluation of complex expression
    f <- if(length(strata))
      cph(y ~ x + strat(strata), surv=TRUE, method=modtype)
    else
      cph(y ~ x, surv=TRUE, method=modtype)
    f$non.slopes <- f$assume.code <- f$assign <- f$name <- f$assume <- NULL
    ##Don't fool fastbw called from predab.resample
    f
  }
  
  predab.resample(fit, method=method, fit=cox.fit, measure=discrim,
                  pr=pr, B=B, bw=bw, rule=rule, type=type, sls=sls,
                  aics=aics, force=force, estimates=estimates,
                  dxy=dxy, u=u, need.surv=need.surv,
                  modtype=modtype,tol=tol, ...)
}

dxy.cens <- function(x, y, type=c('time','hazard')) {
  type <- match.arg(type)
  negate <- type == 'hazard'
  if(! is.Surv(y)) y <- Surv(y)
   else {
     stype <- attr(y, 'type')
     if(length(stype) == 1 && stype == 'left') {
       y <- Surv(y[,1], y[,2])   # right censored
       negate <- ! negate
     }
   }
  i <- is.na(x) | is.na(y)
  if(any(i)) {
    x <- x[! i ]
    y <- y[! i,]
  }
  # Higher risk score = lower T so some would use reverse=TRUE
  k <- suppressWarnings(concordancefit(y, x, reverse=FALSE))
  cindex <- k$concordance
  se     <- sqrt(k$var)
  dxy    <- 2 * (cindex - .5)
  se     <- 2 * se
  if(negate) dxy <- - dxy
  structure(c(dxy=dxy, se=se), names=c('Dxy','se'))
}

Try the rms package in your browser

Any scripts or data that you put into this service are public.

rms documentation built on Sept. 11, 2024, 7:51 p.m.