View source: R/splineDensity.smoothingSplinesValidation.R
smoothSplinesVal | R Documentation |
alpha
As smoothSplines
, smoothSplinesVal
computes the density function that 'best' fits
discretized distributional data, using B-spline basis functions, for different alpha
.
Comparing and choosing an appropriate alpha
is the ultimate goal.
smoothSplinesVal(
k,
l,
alpha,
data,
xcp,
knots,
weights = matrix(1, dim(data)[1], dim(data)[2]),
prior = "default",
cores = 1
)
k |
smoothing splines degree |
l |
order of derivative in the penalization term |
alpha |
vector of weights for penalization |
data |
an object of class "matrix" containing data to be smoothed, row by row |
xcp |
vector of control points |
knots |
either vector of knots for the splines or a integer for the number of equispaced knots |
weights |
matrix of weights. If not gives, all data points will be weighted the same. |
prior |
prior used for zero-replacements. This must be one of "perks", "jeffreys", "bayes_laplace", "sq" or "default" |
cores |
number of cores for parallel execution |
See smoothSplines
for the description of the algorithm.
A list of three objects:
alpha |
the values of |
J |
the values of the functional evaluated in the minimizing |
CV-error |
the values of the leave-one-out CV-error |
Alessia Di Blasi, Federico Pavone, Gianluca Zeni, Matthias Templ
J. Machalova, K. Hron & G.S. Monti (2016): Preprocessing of centred logratio transformed density functions using smoothing splines. Journal of Applied Statistics, 43:8, 1419-1435.
SepalLengthCm <- iris$Sepal.Length
Species <- iris$Species
iris1 <- SepalLengthCm[iris$Species==levels(iris$Species)[1]]
h1 <- hist(iris1, nclass = 12, plot = FALSE)
## Not run:
midx1 <- h1$mids
midy1 <- matrix(h1$density, nrow=1, ncol = length(h1$density), byrow=TRUE)
knots <- 7
sol1 <- smoothSplinesVal(k=3,l=2,alpha=10^seq(-4,4,by=1),midy1,midx1,knots,cores=1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.