Nothing
#' Compositional error deviation
#'
#' Normalized Aitchison distance between two data sets
#'
#' @param x matrix or data frame
#' @param y matrix or data frame of the same size as x
#' @param ni normalization parameter. See details below.
#' @return the compositinal error distance
#' @author Matthias Templ
#' @references Hron, K., Templ, M., Filzmoser, P. (2010) Imputation of
#' missing values for compositional data using classical and robust methods
#' \emph{Computational Statistics and Data Analysis}, 54 (12),
#' 3095-3107.
#'
#' Templ, M., Hron, K., Filzmoser, P., Gardlo, A. (2016).
#' Imputation of rounded zeros for high-dimensional compositional data.
#' \emph{Chemometrics and Intelligent Laboratory Systems}, 155, 183-190.
#'
#' @seealso \code{\link{rdcm}}
#' @details This function has been mainly written for procudures
#' that evaluate imputation or replacement of rounded zeros. The ni parameter can thus, e.g. be
#' used for expressing the number of rounded zeros.
#' @keywords manip
#' @export
#' @examples
#' data(expenditures)
#' x <- expenditures
#' x[1,3] <- NA
#' xi <- impKNNa(x)$xImp
#' ced(expenditures, xi, ni = sum(is.na(x)))
ced <- function(x, y, ni){
return(aDist(x, y)/ni)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.