Nothing
#' Robust Estimation for Compositional Data.
#'
#' The package contains methods for imputation of compositional data including
#' robust methods, (robust) outlier detection for compositional data, (robust)
#' principal component analysis for compositional data, (robust) factor
#' analysis for compositional data, (robust) discriminant analysis (Fisher
#' rule) and (robust) Anderson-Darling normality tests for compositional data
#' as well as popular log-ratio transformations (alr, clr, ilr, and their
#' inverse transformations).
#'
#'
#' @name robCompositions-package
#' @aliases robCompositions-package robCompositions
#' @docType package
#' @author Matthias Templ, Peter Filzmoser, Karel Hron,
#'
#' Maintainer: Matthias Templ <templ@@tuwien.ac.at>
#' @references Aitchison, J. (1986) \emph{The Statistical Analysis of
#' Compositional Data} Monographs on Statistics and Applied Probability.
#' Chapman and Hall Ltd., London (UK). 416p.
#'
#' Filzmoser, P., and Hron, K. (2008) Outlier detection for compositional data
#' using robust methods. \emph{Math. Geosciences}, \bold{40} 233-248.
#'
#' Filzmoser, P., Hron, K., Reimann, C. (2009) Principal Component Analysis for
#' Compositional Data with Outliers. \emph{Environmetrics}, \bold{20} (6),
#' 621--632.
#'
#' P. Filzmoser, K. Hron, C. Reimann, R. Garrett (2009): Robust Factor Analysis
#' for Compositional Data. \emph{Computers and Geosciences}, \bold{35} (9),
#' 1854--1861.
#'
#' Hron, K. and Templ, M. and Filzmoser, P. (2010) Imputation of missing values
#' for compositional data using classical and robust methods
#' \emph{Computational Statistics and Data Analysis}, \bold{54} (12),
#' 3095--3107.
#'
#' C. Reimann, P. Filzmoser, R.G. Garrett, and R. Dutter (2008): Statistical
#' Data Analysis Explained. \emph{Applied Environmental Statistics with R}.
#' John Wiley and Sons, Chichester, 2008.
#' @keywords package
#' @examples
#'
#' ## k nearest neighbor imputation
#' data(expenditures)
#' expenditures[1,3]
#' expenditures[1,3] <- NA
#' impKNNa(expenditures)$xImp[1,3]
#'
#' ## iterative model based imputation
#' data(expenditures)
#' x <- expenditures
#' x[1,3]
#' x[1,3] <- NA
#' xi <- impCoda(x)$xImp
#' xi[1,3]
#' s1 <- sum(x[1,-3])
#' impS <- sum(xi[1,-3])
#' xi[,3] * s1/impS
#'
#' xi <- impKNNa(expenditures)
#' xi
#' summary(xi)
#' \dontrun{plot(xi, which=1)}
#' plot(xi, which=2)
#' plot(xi, which=3)
#'
#' ## pca
#' data(expenditures)
#' p1 <- pcaCoDa(expenditures)
#' p1
#' plot(p1)
#'
#' ## outlier detection
#' data(expenditures)
#' oD <- outCoDa(expenditures)
#' oD
#' plot(oD)
#'
#' ## transformations
#' data(arcticLake)
#' x <- arcticLake
#' x.alr <- addLR(x, 2)
#' y <- addLRinv(x.alr)
#' addLRinv(addLR(x, 3))
#' data(expenditures)
#' x <- expenditures
#' y <- addLRinv(addLR(x, 5))
#' head(x)
#' head(y)
#' addLRinv(x.alr, ivar=2, useClassInfo=FALSE)
#'
#' data(expenditures)
#' eclr <- cenLR(expenditures)
#' inveclr <- cenLRinv(eclr)
#' head(expenditures)
#' head(inveclr)
#' head(cenLRinv(eclr$x.clr))
#'
#' require(MASS)
#' Sigma <- matrix(c(5.05,4.95,4.95,5.05), ncol=2, byrow=TRUE)
#' z <- pivotCoordInv(mvrnorm(100, mu=c(0,2), Sigma=Sigma))
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.