R/lba_race.R

Defines functions n1CDF ret_arg2 ret_arg n1PDF_core n1PDF check_n1_arguments rep_dots n1PDFfixedt0

Documented in n1CDF n1PDF

#' LBA race functions: Likelihood for first accumulator to win.
#' 
#' n1PDF and n1CDF take RTs, the distribution functions of the \link{LBA}, and
#' corresponding parameter values and put them throughout the race equations and
#' return the likelihood for the first accumulator winning (hence n1) in a set
#' of accumulators.
#' 
#' @param rt a vector of RTs.
#' @param A,b,t0 LBA parameters, see \code{\link{LBA}}. Can either be a single
#'   numeric vector (which will be recycled to reach \code{length(rt)} for
#'   trialwise parameters) \emph{or} a \code{list} of such vectors in which each
#'   list element corresponds to the parameters for this accumulator (i.e., the
#'   list needs to be of the same length as there are accumulators). Each list
#'   will also be recycled to reach \code{length(rt)} for trialwise parameters
#'   per accumulator.
#' @param st0 parameter specifying the variability of \code{t0} (which varies
#'   uniformly from \code{t0} to \code{t0} + \code{st0}). Can be trialwise, and
#'   will be recycled to length of \code{rt}.
#' @param ... two \emph{named} drift rate parameters depending on
#'   \code{distribution} (e.g., \code{mean_v} and \code{sd_v} for
#'   \code{distribution=="norm"}). The parameters can either be given as a
#'   numeric vector or a list. If a numeric vector is passed each element of the
#'   vector corresponds to one accumulator. If a list is passed each list
#'   element corresponds to one accumulator allowing again trialwise driftrates.
#'   The shorter parameter will be recycled as necessary (and also the elements
#'   of the list to match the length of \code{rt}). See examples.
#' @param distribution character specifying the distribution of the drift rate.
#'   Possible values are \code{c("norm", "gamma", "frechet", "lnorm")}, default
#'   is \code{"norm"}.
#' @param args.dist list of optional further arguments to the distribution
#'   functions (i.e., \code{posdrift} or \code{robust} for
#'   \code{distribution=="norm"}).
#' @param silent logical. Should the number of accumulators used be suppressed?
#'   Default is \code{FALSE} which prints the number of accumulators.
#'   
#'   
#' @details For a set of \eqn{N} independent accumulators \eqn{i = 1...N}, the
#'   race likelihood for a given accumulator \eqn{i} is given by 
#'   \deqn{L(\mbox{unit }i \mbox{ wins}) = f_i(t) \times \prod_{j<>i} [ S_j(t)
#'   ]}{L(unit i wins) = f_i(t) * prod_j<>i [ S_j(t) ]} where \eqn{f(t)} is the
#'   PDF (\code{dlba_...}) and \eqn{S_j(t) = 1 - F_j(t)} is the survivor
#'   function, that is the complement of the CDF \eqn{F(t)} (\code{plba_...}) at
#'   time \eqn{t}.
#'   
#'   In other words, this is just the PDF/CDF for the winning accumulator at
#'   time \eqn{t} times the probability that no other accumulators have finished
#'   at time \eqn{t}.
#'   
#' @seealso For more user-friendly functions that return the PDF or CDF for the
#'   corresponding (and not first) accumulator winning see /code{/link{LBA}}.
#'   
#' @name LBA-race
#' @importFrom stats integrate
#'   
#' @example examples/examples.lba-race.R
#'   
NULL

## note, this functions does not check parameters, it is only called internally (i.e., passed correctly).
n1PDFfixedt0 <- function(rt,A,b, t0, ..., pdf, cdf, args.dist = list()) {
  # Generates defective PDF for responses on node #1.
  dots <- list(...)
  nn <- length(rt)
  #if (length(A) != nn) browser()
  #browser()
  n_v <- max(vapply(dots, length, 0))  # Number of responses
  if (n_v>2) {
    tmp=array(dim=c(length(rt),n_v-1))
    for (i in 2:n_v) 
      tmp[,i-1] <- do.call(cdf, 
                           args = c(
                             rt=list(rt), 
                             A=if(is.list(A)) A[i] else list(A), 
                             b=if(is.list(b)) b[i] else list(b), 
                             t0 = if(is.list(t0)) t0[i] else list(t0), 
                             sapply(dots, "[[", i = i, simplify = FALSE), 
                             args.dist, nn=nn))
    G <- apply(1-tmp,1,prod)
  } else {
    G <- 1-do.call(cdf, 
                   args = c(
                     rt=list(rt), 
                     A=if(is.list(A)) A[2] else list(A), 
                     b=if(is.list(b)) b[2] else list(b), 
                     t0 = if(is.list(t0)) t0[2] else list(t0), 
                     sapply(dots, "[[", i = 2, simplify = FALSE), 
                     args.dist, nn=nn))
  }
  G*do.call(pdf, 
            args = c(
              rt=list(rt), 
              A=if(is.list(A)) A[1] else list(A), 
              b=if(is.list(b)) b[1] else list(b), 
              t0 = if(is.list(t0)) t0[1] else list(t0), 
              sapply(dots, "[[", i = 1, simplify = FALSE), 
              args.dist, nn=nn))
}

#sapply(dots, rep_dots, which = 1, nn = nn, simplify = FALSE)
rep_dots <- function(arg, which, nn) {
  rep(arg[[which]], length.out=nn)
}

## functions which checks if argument is numeric and 
check_n1_arguments <- function(arg, nn, n_v, dots = FALSE) {
  mc <- match.call()
  varname <- sub("dots$", "", deparse(mc[["arg"]]), fixed = TRUE)
  if (!is.list(arg)) {
    if ((!is.vector(arg, "numeric")) || (length(arg) < 1)) 
      stop(paste(varname, "needs to be a numeric vector of length >= 1!"))
    if (dots) {
      arg <- as.list(arg)
      arg <- lapply(arg, rep, length.out=nn)
    } else arg <- rep(arg, length.out=nn)
  } else {
    if (!dots && (length(arg) != n_v)) 
      stop(paste("if", varname, "is a list, its length needs to correspond to the number of accumulators."))
    for (i in seq_along(arg)) {
      if ((!is.vector(arg[[i]], "numeric")) || (length(arg[[i]]) < 1)) 
        stop(paste0(varname, "[[", i, "]] needs to be a numeric vector of length >= 1!"))
      arg[[i]] <- rep(arg[[i]], length.out=nn)
    }
  }
  return(unname(arg))
}

#' @rdname LBA-race
#' @export
n1PDF <- function(rt, A, b, t0, ..., st0=0, 
                  distribution = c("norm", "gamma", "frechet", "lnorm"), 
                  args.dist = list(), silent = FALSE) {
  dots <- list(...)
  #browser()
  if (is.null(names(dots))) stop("... arguments need to be named.")
  if (any(names(dots) == "")) stop("all ... arguments need to be named.")
  
  n_v <- max(vapply(dots, length, 0))  # Number of responses
  if(!silent) message(paste("Results based on", n_v, "accumulators/drift rates."))
  if (n_v < 2) stop("There need to be at least two accumulators/drift rates.")
  distribution <- match.arg(distribution)
  #check_single_arg(t0 = t0)
  nn <- length(rt)
  #browser()
  A <- check_n1_arguments(A, nn=nn, n_v=n_v)
  b <- check_n1_arguments(b, nn=nn, n_v=n_v)
  t0 <- check_n1_arguments(t0, nn=nn, n_v=n_v)
  st0 <- rep(unname(st0), length.out = nn)
  switch(distribution, 
         norm = {
           pdf <- dlba_norm_core
           cdf <- plba_norm_core
           if (any(!(c("mean_v","sd_v") %in% names(dots)))) 
             stop("mean_v and sd_v need to be passed for distribution = \"norm\"")
           dots$mean_v <- check_n1_arguments(dots$mean_v, nn=nn, n_v=n_v, dots = TRUE)
           dots$sd_v <- check_n1_arguments(dots$sd_v, nn=nn, n_v=n_v, dots = TRUE)
           dots <- dots[c("mean_v","sd_v")]
         },
         gamma = {
           pdf <- dlba_gamma_core
           cdf <- plba_gamma_core
           if (!("shape_v" %in% names(dots))) 
             stop("shape_v needs to be passed for distribution = \"gamma\"")
           if ((!("rate_v" %in% names(dots))) & (!("scale_v" %in% names(dots)))) 
             stop("rate_v or scale_v need to be passed for distribution = \"gamma\"")
           dots$shape_v <- check_n1_arguments(dots$shape_v, nn=nn, n_v=n_v, dots = TRUE)
           if ("scale_v" %in% names(dots)) {
             dots$scale_v <- check_n1_arguments(dots$scale_v, nn=nn, n_v=n_v, dots = TRUE)
             if (is.list(dots$scale_v)) {
               dots$rate_v <- lapply(dots$scale_v, function(x) 1/x)
             } else dots$rate_v <- 1/dots$scale_v
           } else dots$rate_v <- check_n1_arguments(dots$rate_v, nn=nn, n_v=n_v, dots = TRUE)
           dots <- dots[c("shape_v","rate_v")]
         },
         frechet = {
           pdf <- dlba_frechet_core
           cdf <- plba_frechet_core
           if (any(!(c("shape_v","scale_v") %in% names(dots)))) 
             stop("shape_v and scale_v need to be passed for distribution = \"frechet\"")
           dots$shape_v <- check_n1_arguments(dots$shape_v, nn=nn, n_v=n_v, dots = TRUE)
           dots$scale_v <- check_n1_arguments(dots$scale_v, nn=nn, n_v=n_v, dots = TRUE)
           dots <- dots[c("shape_v","scale_v")]
         },
         lnorm = {
           pdf <- dlba_lnorm_core
           cdf <- plba_lnorm_core
           if (any(!(c("meanlog_v","sdlog_v") %in% names(dots)))) 
             stop("meanlog_v and sdlog_v need to be passed for distribution = \"lnorm\"")
           dots$meanlog_v <- check_n1_arguments(dots$meanlog_v, nn=nn, n_v=n_v, dots = TRUE)
           dots$sdlog_v <- check_n1_arguments(dots$sdlog_v, nn=nn, n_v=n_v, dots = TRUE)
           dots <- dots[c("meanlog_v","sdlog_v")]
         }
  )
  #browser()
  for (i in seq_len(length(dots))) {
    if (length(dots[[i]]) < n_v) dots[[i]] <- rep(dots[[i]],length.out=n_v)
  }
#   if (length(st0)>1) {
#     warning("st0 set to st0[1]. Only one non-decision time variability permitted.")
#     st0 <- st0[1] # Only ONE non-decision time.
#   }
  #browser()
  do.call(n1PDF_core, 
          args = c(
            rt = list(rt),
            A = list(A),
            b = list(b),
            t0 = list(t0),
            st0 = list(st0),
            dots,
            pdf = pdf,
            cdf = cdf,
            args.dist = list(args.dist)
          ))
}


n1PDF_core <- function(rt, A, b, t0, ..., st0, pdf, cdf, args.dist = list()) {
  dots <- list(...)
  #browser()
  if (all(st0==0)) return(do.call(n1PDFfixedt0, 
                                  args = c(
                                    rt = list(rt),
                                    A = list(A),
                                    b = list(b),
                                    t0 = list(t0),
                                    dots,
                                    pdf = pdf,
                                    cdf = cdf,
                                    args.dist = list(args.dist)
                                  )))
  else {
    tmpf <- function(rt, A, b, t0, st0, ..., pdf, cdf, args.dist = list()) {
      #browser()
      dots2 <- list(...)
      do.call(n1PDFfixedt0, 
              args = c(
                rt = list(rt),
                A = list(A),
                b = list(b),
                t0 = list(t0),
                dots2,
                pdf = pdf,
                cdf = cdf,
                args.dist = list(args.dist)
              )) / st0
      #rt=list(pmax(rt-t0, 0))
    }
    outs <- vector("numeric", length = length(rt))
    if (length(st0) == 1) st0 <- rep(st0, length.out = length(rt))
    for (i in 1:length(rt)) {
      if (st0[i] != 0) {
        tmp <- do.call(integrate, 
                       args = c(
                         f = tmpf,
                         lower = unname(rt[i] - st0[i]),
                         upper = unname(rt[i]),
                         A = ret_arg(A, i),
                         b = ret_arg(b, i),
                         t0 = ret_arg(t0, i),
                         sapply(dots, function(z, i)
                           sapply(z, ret_arg2, which = i, simplify = FALSE), 
                           i = i, simplify = FALSE),
                         pdf = pdf,
                         cdf = cdf,
                         args.dist = list(args.dist),
                         stop.on.error = FALSE,
                         st0 = list(st0[i])
                       ))
        if (tmp$message != "OK") warning(paste("n1PDF:", tmp$message))
        outs[i] <- tmp$value
      } else outs[i] <- do.call(n1PDFfixedt0, 
                                args = c(
                                  rt = list(rt[i]),
                                  A = ret_arg(A, i),
                                  b = ret_arg(b, i),
                                  t0 = ret_arg(t0, i),
                                  sapply(dots, function(z, i)
                                    sapply(z, ret_arg2, which = i, 
                                           simplify = FALSE), 
                                    i = i, simplify = FALSE),
                                  pdf = pdf,
                                  cdf = cdf,
                                  args.dist = list(args.dist)
                                ))
    }
    return(outs)
  }
}

# n1PDF_single <- function(rt, A, b, t0, ..., st0, pdf, cdf, args.dist = list()) {
#   dots <- list(...)
#   #browser()
#   if (st0==0) return(do.call(n1PDFfixedt0, args = c(rt=list(rt), A=list(A), b=list(b), t0 = list(t0), dots, pdf=pdf, cdf=cdf, args.dist = args.dist)))
#   else {
#     tmpf <- function(rt, A, b, t0, ..., pdf, cdf, args.dist = list()) {
#       #browser()
#       do.call(n1PDFfixedt0, args = c(rt=list(pmax(rt-t0, 0)), A=list(A), b=list(b), t0 = list(0), dots, pdf=pdf, cdf=cdf, args.dist = args.dist))/st0
#     }
#     outs=numeric(length(rt))
#     #browser()
#     for (i in 1:length(outs)) {
#       tmp <- do.call(integrate, args=c(f=tmpf, lower=rt[i]-t0[1]-st0, upper=rt[i]-t0[1], A=list(A), b=list(b), t0=list(0), dots, pdf=pdf, cdf=cdf, args.dist = args.dist, stop.on.error = FALSE))
#       if (tmp$message != "OK") warning(paste("n1PDF:", tmp$message))
#       outs[i] <- tmp$value
#     }
#     return(outs)
#   }
# }

ret_arg <- function(arg, which) {
  list(if(is.list(arg)) {
    if (which <= min(sapply(arg, length))) sapply(arg, "[[", i = which, simplify = FALSE) else arg 
    } else {
      if (which <= length(arg)) arg[which]
      else arg
      })
}

ret_arg2 <- function(arg, which) {
  if(is.list(arg)) {
    if (which <= min(sapply(arg, length))) sapply(arg, "[[", i = which, simplify = FALSE) else arg 
    } else {
      if (which <= length(arg)) arg[which]
      else arg
      }
}

# rt = time, A=x0max, b=chi, v=drift, sv=sdI
#' @rdname LBA-race
#' @export
n1CDF <- function(rt,A,b, t0, ..., st0=0, 
                  distribution = c("norm", "gamma", "frechet", "lnorm"), 
                  args.dist = list(), silent = FALSE) {  #, browser=FALSE
  # Generates defective CDF for responses on node #1. 
  dots <- list(...)
  if (is.null(names(dots))) stop("... arguments need to be named.")
  
  n_v <- max(vapply(dots, length, 0))  # Number of responses
  if(!silent) message(paste("Results based on", n_v, "accumulators/drift rates."))
  if (n_v < 2) stop("There need to be at least two accumulators/drift rates.")
  distribution <- match.arg(distribution)
  #check_single_arg(t0 = t0)
  nn <- length(rt)
  #browser()
  A <- check_n1_arguments(A, nn=nn, n_v=n_v)
  b <- check_n1_arguments(b, nn=nn, n_v=n_v)
  t0 <- check_n1_arguments(t0, nn=nn, n_v=n_v)
  st0 <- rep(unname(st0), length.out = nn)
  switch(distribution, 
         norm = {
           pdf <- dlba_norm_core
           cdf <- plba_norm_core
           if (any(!(c("mean_v","sd_v") %in% names(dots)))) 
             stop("mean_v and sd_v need to be passed for distribution = \"norm\"")
           dots$mean_v <- check_n1_arguments(dots$mean_v, nn=nn, n_v=n_v, dots = TRUE)
           dots$sd_v <- check_n1_arguments(dots$sd_v, nn=nn, n_v=n_v, dots = TRUE)
           dots <- dots[c("mean_v","sd_v")]
         },
         gamma = {
           pdf <- dlba_gamma_core
           cdf <- plba_gamma_core
           if (!("shape_v" %in% names(dots))) 
             stop("shape_v needs to be passed for distribution = \"gamma\"")
           if ((!("rate_v" %in% names(dots))) & (!("scale_v" %in% names(dots)))) 
             stop("rate_v or scale_v need to be passed for distribution = \"gamma\"")
           dots$shape_v <- check_n1_arguments(dots$shape_v, nn=nn, n_v=n_v, dots = TRUE)
           if ("scale_v" %in% names(dots)) {
             dots$scale_v <- check_n1_arguments(dots$scale_v, nn=nn, n_v=n_v, dots = TRUE)
             if (is.list(dots$scale_v)) {
               dots$rate_v <- lapply(dots$scale_v, function(x) 1/x)
             } else dots$rate_v <- 1/dots$scale_v
           } else dots$rate_v <- check_n1_arguments(dots$rate_v, nn=nn, n_v=n_v, dots = TRUE)
           dots <- dots[c("shape_v","rate_v")]
         },
         frechet = {
           pdf <- dlba_frechet_core
           cdf <- plba_frechet_core
           if (any(!(c("shape_v","scale_v") %in% names(dots)))) 
             stop("shape_v and scale_v need to be passed for distribution = \"frechet\"")
           dots$shape_v <- check_n1_arguments(dots$shape_v, nn=nn, n_v=n_v, dots = TRUE)
           dots$scale_v <- check_n1_arguments(dots$scale_v, nn=nn, n_v=n_v, dots = TRUE)
           dots <- dots[c("shape_v","scale_v")]
         },
         lnorm = {
           pdf <- dlba_lnorm_core
           cdf <- plba_lnorm_core
           if (any(!(c("meanlog_v","sdlog_v") %in% names(dots)))) 
             stop("meanlog_v and sdlog_v need to be passed for distribution = \"lnorm\"")
           dots$meanlog_v <- check_n1_arguments(dots$meanlog_v, nn=nn, n_v=n_v, dots = TRUE)
           dots$sdlog_v <- check_n1_arguments(dots$sdlog_v, nn=nn, n_v=n_v, dots = TRUE)
           dots <- dots[c("meanlog_v","sdlog_v")]
         }
  )
  
  for (i in seq_len(length(dots))) {
    if (length(dots[[i]]) < n_v) dots[[i]] <- rep(dots[[i]],length.out=n_v)
  }
#   if (length(st0)>1) {
#     warning("st0 set to st0[1]. Only one non-decision time variability permitted.")
#     st0 <- st0[1] # Only ONE non-decision time.
#   }
  if (any(st0<1e-6)) {
    if (any(sapply(st0[st0<1e-6], function(x) !isTRUE(all.equal(x, 0))))) 
      warning("st0 set to 0 for values < 1e-6. Integral can fail for small st0.")
    st0[st0<1e-6] <- 0
  } # 
  outs <- numeric(length(rt))
  #bounds <- c(0,rt)
  #browser()
  for (i in 1:length(rt)) {
    tmp_obj <- 
      do.call(integrate, 
              args = c(
                f = n1PDF_core,
                lower = 0,
                upper = rt[i],
                subdivisions = 1000,
                A = ret_arg(A, i),
                b = ret_arg(b, i),
                t0 = ret_arg(t0, i),
                st0 = list(st0[i]),
                sapply(dots, function(z, i)
                  sapply(z, "[[", i = i, simplify = FALSE), 
                  i = i, simplify = FALSE),
                pdf = pdf,
                cdf = cdf,
                stop.on.error = FALSE,
                args.dist = list(args.dist)
              ))
    if (tmp_obj$message != "OK") {
      warning(tmp_obj$message)
    }
    outs[i] <- tmp_obj$value
  }
  outs
}

Try the rtdists package in your browser

Any scripts or data that you put into this service are public.

rtdists documentation built on Jan. 7, 2022, 5:16 p.m.