Nothing
#' @title Rush Controller
#'
#' @description
#' [Rush] is the controller in a centralized rush network.
#' The controller starts and stops the workers, pushes tasks to the workers and fetches results.
#'
#' @section Local Workers:
#' A local worker runs on the same machine as the controller.
#' Local workers are spawned with the `$start_local_workers() method via the `processx` package.
#'
#' @section Remote Workers:
#' A remote worker runs on a different machine than the controller.
#' Remote workers are started manually with the `$create_worker_script()` and `$start_remote_workers()` methods.
#' Remote workers can be started on any system as long as the system has access to Redis and all required packages are installed.
#' Only a heartbeat process can kill remote workers.
#' The heartbeat process also monitors the remote workers for crashes.
#'
#' @section Stopping Workers:
#' Local and remote workers can be terminated with the `$stop_workers(type = "terminate")` method.
#' The workers evaluate the currently running task and then terminate.
#' The option `type = "kill"` stops the workers immediately.
#' Killing a local worker is done with the `processx` package.
#' Remote workers are killed by pushing a kill signal to the heartbeat process.
#' Without a heartbeat process a remote worker cannot be killed (see section heartbeat).
#'
#' @section Heartbeat:
#' The heartbeat process periodically signals that a worker is still alive.
#' This is implemented by setting a [timeout](https://redis.io/docs/latest/commands/expire/) on the heartbeat key.
#' Furthermore, the heartbeat process can kill the worker.
#'
#' @section Data Structure:
#' Tasks are stored in Redis [hashes](https://redis.io/docs/latest/develop/data-types/hashes/).
#' Hashes are collections of field-value pairs.
#' The key of the hash identifies the task in Redis and `rush`.
#'
#' ```
#' key : xs | ys | xs_extra
#' ```
#'
#' The field-value pairs are written by different methods, e.g. `$push_tasks()` writes `xs` and `$push_results()` writes `ys`.
#' The values of the fields are serialized lists or atomic values e.g. unserializing `xs` gives `list(x1 = 1, x2 = 2)`
#' This data structure allows quick converting of a hash into a row and joining multiple hashes into a table.
#'
#' ```
#' | key | x1 | x2 | y | timestamp |
#' | 1.. | 3 | 4 | 7 | 12:04:11 |
#' | 2.. | 1 | 4 | 5 | 12:04:12 |
#' | 3.. | 1 | 1 | 2 | 12:04:13 |
#' ```
#' When the value of a field is a named list, the field can store the cells of multiple columns of the table.
#' When the value of a field is an atomic value, the field stores a single cell of a column named after the field.
#' The methods `$push_tasks()` and `$push_results()` write into multiple hashes.
#' For example, `$push_tasks(xss = list(list(x1 = 1, x2 = 2), list(x1 = 2, x2 = 2))` writes `xs` in two hashes.
#'
#' @section Task States:
#' A task can go through four states `"queued"`, `"running"`, `"finished"` or `"failed"`.
#' Internally, the keys of the tasks are pushed through Redis [lists](https://redis.io/docs/latest/develop/data-types/lists/) and [sets](https://redis.io/docs/latest/develop/data-types/sets/) to keep track of their state.
#' Queued tasks are waiting to be evaluated.
#' A worker pops a task from the queue and changes the state to `"running"` while evaluating the task.
#' When the task is finished, the state is changed to `"finished" and the result is written to the data base.
#' If the task fails, the state is changed to `"failed"` instead of `"finished"`.
#'
#' @section Queues:
#' Rush uses a shared queue and a queue for each worker.
#' The shared queue is used to push tasks to the workers.
#' The first worker that pops a task from the shared queue evaluates the task.
#' The worker queues are used to push tasks to specific workers.
#'
#' @section Fetch Tasks and Results:
#' The `$fetch_*()` methods retrieve data from the Redis database.
#' A matching method is defined for each task state e.g. `$fetch_running_tasks()` and `$fetch_finished_tasks()`.
#' The methods `$fetch_new_tasks()` and `$fetch_finished_tasks()` cache the already queried data.
#' The `$wait_for_finished_tasks()` variant wait until a new result is available.
#'
#' @section Error Handling:
#' When evaluating tasks in a distributed system, many things can go wrong.
#' Simple R errors in the worker loop are caught and written to the archive.
#' The task is marked as `"failed"`.
#' If the connection to a worker is lost, it looks like a task is `"running"` forever.
#' The method `$detect_lost_workers()` identifies lost workers.
#' Running this method periodically adds a small overhead.
#'
#' @section Logging:
#' The worker logs all messages written with the `lgr` package to the data base.
#' The `lgr_thresholds` argument defines the logging level for each logger e.g. `c(rush = "debug")`.
#' Saving log messages adds a small overhead but is useful for debugging.
#' By default, no log messages are stored.
#'
#' @section Seed:
#' Setting a seed is important for reproducibility.
#' The tasks can be evaluated with a specific L'Ecuyer-CMRG seed.
#' If an initial seed is passed, the seed is used to generate L'Ecuyer-CMRG seeds for each task.
#' Each task is then evaluated with a separate RNG stream.
#' See [parallel::nextRNGStream] for more details.
#'
#' @template param_network_id
#' @template param_config
#' @template param_worker_loop
#' @template param_globals
#' @template param_packages
#' @template param_remote
#' @template param_heartbeat_period
#' @template param_heartbeat_expire
#' @template param_lgr_thresholds
#' @template param_lgr_buffer_size
#' @template param_seed
#' @template param_data_format
#'
#' @return Object of class [R6::R6Class] and `Rush` with controller methods.
#' @examples
#' # This example is not executed since Redis must be installed
#' \donttest{
#' config_local = redux::redis_config()
#' rush = rsh(network_id = "test_network", config = config_local)
#' rush
#' }
Rush = R6::R6Class("Rush",
public = list(
#' @field network_id (`character(1)`)\cr
#' Identifier of the rush network.
network_id = NULL,
#' @field config ([redux::redis_config])\cr
#' Redis configuration options.
config = NULL,
#' @field connector ([redux::redis_api])\cr
#' Returns a connection to Redis.
connector = NULL,
#' @field processes ([processx::process])\cr
#' List of processes started with `$start_local_workers()`.
processes = NULL,
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function(network_id = NULL, config = NULL, seed = NULL) {
self$network_id = assert_string(network_id, null.ok = TRUE) %??% uuid::UUIDgenerate()
self$config = assert_class(config, "redis_config", null.ok = TRUE) %??% rush_env$config
if (is.null(self$config)) self$config = redux::redis_config()
if (!redux::redis_available(self$config)) {
stop("Can't connect to Redis. Check the configuration.")
}
self$connector = redux::hiredis(self$config)
if (!is.null(seed)) {
if (is_lecyer_cmrg_seed(seed)) {
# use supplied L'Ecuyer-CMRG seed
private$.seed = seed
} else {
# generate new L'Ecuyer-CMRG seed
assert_count(seed)
# save old rng state and kind and switch to L'Ecuyer-CMRG
oseed = get_random_seed()
okind = RNGkind("L'Ecuyer-CMRG")[1]
# restore old rng state and kind
on.exit(set_random_seed(oseed, kind = okind), add = TRUE)
set.seed(seed)
private$.seed = get_random_seed()
}
}
},
#' @description
#' Helper for print outputs.
#'
#' @param ... (ignored).
#'
#' @return (`character()`).
format = function(...) {
sprintf("<%s>", class(self)[1L])
},
#' @description
#' Print method.
#'
#' @return (`character()`).
print = function() {
catn(format(self))
catf(str_indent("* Running Workers:", self$n_running_workers))
catf(str_indent("* Queued Tasks:", self$n_queued_tasks))
catf(str_indent("* Queued Priority Tasks:", self$n_queued_priority_tasks))
catf(str_indent("* Running Tasks:", self$n_running_tasks))
catf(str_indent("* Finished Tasks:", self$n_finished_tasks))
catf(str_indent("* Failed Tasks:", self$n_failed_tasks))
},
#' @description
#' Start workers locally with `processx`.
#' The [processx::process] are stored in `$processes`.
#' Alternatively, use `$create_worker_script()` to create a script for starting workers on remote machines.
#' By default, [worker_loop_default()] is used as worker loop.
#' This function takes the arguments `fun` and optionally `constants` which are passed in `...`.
#'
#' @param n_workers (`integer(1)`)\cr
#' Number of workers to be started.
#' @param supervise (`logical(1)`)\cr
#' Whether to kill the workers when the main R process is shut down.
#' @param wait_for_workers (`logical(1)`)\cr
#' Whether to wait until all workers are available.
#' @param timeout (`numeric(1)`)\cr
#' Timeout to wait for workers in seconds.
#' @param ... (`any`)\cr
#' Arguments passed to `worker_loop`.
start_local_workers = function(
n_workers = NULL,
wait_for_workers = TRUE,
timeout = Inf,
globals = NULL,
packages = NULL,
heartbeat_period = NULL,
heartbeat_expire = NULL,
lgr_thresholds = NULL,
lgr_buffer_size = 0,
supervise = TRUE,
worker_loop = worker_loop_default,
...
) {
n_workers = assert_count(n_workers %??% rush_env$n_workers)
assert_flag(wait_for_workers)
assert_flag(supervise)
r = self$connector
# push worker config to redis
private$.push_worker_config(
globals = globals,
packages = packages,
heartbeat_period = heartbeat_period,
heartbeat_expire = heartbeat_expire,
lgr_thresholds = lgr_thresholds,
lgr_buffer_size = lgr_buffer_size,
worker_loop = worker_loop,
...
)
lg$info("Starting %i worker(s)", n_workers)
# redis config to string
config = discard(self$config, is.null)
config = paste(imap(config, function(value, name) sprintf("%s = '%s'", name, value)), collapse = ", ")
worker_ids = uuid::UUIDgenerate(n = n_workers)
self$processes = c(self$processes, set_names(map(worker_ids, function(worker_id) {
processx::process$new("Rscript",
args = c("-e", sprintf("rush::start_worker(network_id = '%s', worker_id = '%s', remote = FALSE, %s)",
self$network_id, worker_id, config)),
supervise = supervise, stderr = "|") # , stdout = "|"
}), worker_ids))
if (wait_for_workers) self$wait_for_workers(n_workers, timeout)
return(invisible(worker_ids))
},
#' @description
#' Restart local workers.
#' If the worker is is still running, it is killed and restarted.
#'
#' @param worker_ids (`character()`)\cr
#' Worker ids to be restarted.
#' @param supervise (`logical(1)`)\cr
#' Whether to kill the workers when the main R process is shut down.
restart_local_workers = function(worker_ids, supervise = TRUE) {
assert_subset(unlist(worker_ids), self$worker_ids)
r = self$connector
# check for remote workers
worker_info = self$worker_info[list(worker_ids), , on = "worker_id"]
if (any(worker_info$remote)) {
stopf("Can't restart remote workers %s", as_short_string(worker_ids))
}
# stop running workers
if (worker_ids %in% self$running_worker_ids) {
self$stop_workers(type = "kill", worker_ids[worker_ids %in% self$running_worker_ids])
}
lg$info("Restarting %i worker(s): %s", length(worker_ids), str_collapse(worker_ids))
# redis config to string
config = discard(self$config, is.null)
config = paste(imap(config, function(value, name) sprintf("%s = '%s'", name, value)), collapse = ", ")
processes = set_names(map(worker_ids, function(worker_id) {
# restart worker
processx::process$new("Rscript",
args = c("-e", sprintf("rush::start_worker(network_id = '%s', worker_id = '%s', remote = FALSE, %s)",
self$network_id, worker_id, config)),
supervise = supervise, stderr = "|") # , stdout = "|"
}), worker_ids)
self$processes = insert_named(self$processes, processes)
return(invisible(worker_ids))
},
#' @description
#' Create script to remote start workers.
#' Run these command to pre-start a worker.
#' The worker will wait until the start arguments are pushed with `$start_remote_workers()`.
create_worker_script = function() {
# redis config to string
config = discard(self$config, is.null)
config = paste(imap(config, function(value, name) sprintf('%s = "%s"', name, value)), collapse = ", ")
script = sprintf('Rscript -e "rush::start_worker(network_id = "%s", remote = TRUE, %s)"', self$network_id, config)
lg$info("Start worker with:")
lg$info(script)
lg$info("See ?rush::start_worker for more details.")
return(invisible(script))
},
#' @description
#' Push start arguments to remote workers.
#' Remote workers must be pre-started with `$create_worker_script()`.
#'
#' @param ... (`any`)\cr
#' Arguments passed to `worker_loop`.
start_remote_workers = function(
globals = NULL,
packages = NULL,
heartbeat_period = NULL,
heartbeat_expire = NULL,
lgr_thresholds = NULL,
lgr_buffer_size = 0,
worker_loop = worker_loop_default,
...
) {
# push worker config to redis
private$.push_worker_config(
globals = globals,
packages = packages,
heartbeat_period = heartbeat_period,
heartbeat_expire = heartbeat_expire,
lgr_thresholds = lgr_thresholds,
lgr_buffer_size = lgr_buffer_size,
worker_loop = worker_loop,
...
)
return(invisible(self))
},
#' @description
#' Wait until `n` workers are available.
#'
#' @param n (`integer(1)`)\cr
#' Number of workers to wait for.
#' @param timeout (`numeric(1)`)\cr
#' Timeout in seconds.
#' Default is `Inf`.
wait_for_workers = function(n, timeout = Inf) {
assert_count(n)
assert_number(timeout)
timeout = if (is.finite(timeout)) timeout else rush_config()$start_worker_timeout %??% Inf
start_time = Sys.time()
while(self$n_workers < n) {
Sys.sleep(0.01)
if (difftime(Sys.time(), start_time, units = "secs") > timeout) {
stopf("Timeout waiting for %i worker(s)", n)
}
}
return(invisible(self))
},
#' @description
#' Stop workers.
#'
#' @param worker_ids (`character()`)\cr
#' Worker ids to be stopped.
#' If `NULL` all workers are stopped.
#' @param type (`character(1)`)\cr
#' Type of stopping.
#' Either `"terminate"` or `"kill"`.
#' If `"terminate"` the workers evaluate the currently running task and then terminate.
#' If `"kill"` the workers are stopped immediately.
stop_workers = function(type = "terminate", worker_ids = NULL) {
assert_choice(type, c("terminate", "kill"))
worker_ids = assert_subset(worker_ids, self$running_worker_ids) %??% self$running_worker_ids
if (is.null(worker_ids)) return(invisible(self))
r = self$connector
if (type == "terminate") {
lg$debug("Terminating %i worker(s) %s", length(worker_ids), as_short_string(worker_ids))
# Push terminate signal to worker
cmds = map(worker_ids, function(worker_id) {
c("SET", private$.get_worker_key("terminate", worker_id), "1")
})
r$pipeline(.commands = cmds)
} else if (type == "kill") {
worker_info = self$worker_info[list(worker_ids), , on = "worker_id"]
# kill local
local_workers = worker_info[list(FALSE), worker_id, on = "remote", nomatch = NULL]
lg$debug("Killing %i local worker(s) %s", length(local_workers), as_short_string(local_workers))
# kill with processx
walk(local_workers, function(worker_id) {
killed = self$processes[[worker_id]]$kill()
if (!killed) lg$error("Failed to kill worker %s", worker_id)
})
# set worker state
cmds_local = map(local_workers, function(worker_id) {
c("SMOVE", private$.get_key("running_worker_ids"), private$.get_key("killed_worker_ids"), worker_id)
})
# kill remote
remote_workers = worker_info [list(TRUE), worker_id, on = "remote", nomatch = NULL]
lg$debug("Killing %i remote worker(s) %s", length(remote_workers), as_short_string(remote_workers))
# push kill signal to heartbeat process and set worker state
cmds_remote = unlist(map(remote_workers, function(worker_id) {
list(
c("LPUSH", private$.get_worker_key("kill", worker_id), "TRUE"),
c("SMOVE", private$.get_key("running_worker_ids"), private$.get_key("killed_worker_ids"), worker_id))
}), recursive = FALSE)
r$pipeline(.commands = c(cmds_local, cmds_remote))
}
return(invisible(self))
},
#' @description
#' Detect lost workers.
#' The state of the worker is changed to `"lost"`.
#' Local workers without a heartbeat are checked by their process id.
#' Checking local workers on unix systems only takes a few microseconds per worker.
#' But checking local workers on windows might be very slow.
#' Workers with a heartbeat process are checked with the heartbeat.
#' Lost tasks are marked as `"lost"`.
#'
#' @param restart_local_workers (`logical(1)`)\cr
#' Whether to restart lost workers.
detect_lost_workers = function(restart_local_workers = FALSE) {
assert_flag(restart_local_workers)
r = self$connector
# check workers with a heartbeat
heartbeat_keys = r$SMEMBERS(private$.get_key("heartbeat_keys"))
lost_workers_heartbeat = if (length(heartbeat_keys)) {
lg$debug("Checking %i worker(s) with heartbeat", length(heartbeat_keys))
running = as.logical(r$pipeline(.commands = map(heartbeat_keys, function(heartbeat_key) c("EXISTS", heartbeat_key))))
if (all(running)) return(invisible(self))
# search for associated worker ids
heartbeat_keys = heartbeat_keys[!running]
lost_workers = self$worker_info[heartbeat == heartbeat_keys, worker_id]
# set worker state
cmds = map(lost_workers, function(worker_id) {
c("SMOVE", private$.get_key("running_worker_ids"), private$.get_key("lost_worker_ids"), worker_id)
})
# remove heartbeat keys
cmds = c(cmds, list(c("SREM", "heartbeat_keys", heartbeat_keys)))
r$pipeline(.commands = cmds)
lost_workers
}
# check local workers without a heartbeat
local_workers = r$SMEMBERS(private$.get_key("local_workers"))
lost_workers_local = if (length(local_workers)) {
# lg$debug("Checking %i worker(s) with process id", length(local_workers))
running = map_lgl(local_workers, function(worker_id) self$processes[[worker_id]]$is_alive())
if (all(running)) return(invisible(self))
# search for associated worker ids
lost_workers = local_workers[!running]
lg$error("Lost %i worker(s): %s", length(lost_workers), str_collapse(lost_workers))
walk(lost_workers, function(worker_id) {
x = self$processes[[worker_id]]$read_all_error_lines()
walk(x, lg$error)
})
if (restart_local_workers) {
self$restart_local_workers(unlist(lost_workers))
lost_workers
} else {
# set worker state
cmds = map(lost_workers, function(worker_id) {
c("SMOVE", private$.get_key("running_worker_ids"), private$.get_key("lost_worker_ids"), worker_id)
})
# remove local pids
cmds = c(cmds, list(c("SREM", private$.get_key("local_workers"), lost_workers)))
r$pipeline(.commands = cmds)
lost_workers
}
}
# mark lost tasks
lost_workers = c(lost_workers_heartbeat, lost_workers_local)
if (length(lost_workers)) {
running_tasks = self$fetch_running_tasks(fields = "worker_extra")
if (!nrow(running_tasks)) return(invisible(self))
lost_workers = unlist(lost_workers)
keys = running_tasks[list(lost_workers), keys, on = "worker_id"]
lg$error("Lost %i task(s): %s", length(keys), str_collapse(keys))
conditions = list(list(message = "Worker has crashed or was killed"))
self$push_failed(keys, conditions = conditions)
}
return(invisible(self))
},
#' @description
#' Stop workers and delete data stored in redis.
#' @param type (`character(1)`)\cr
#' Type of stopping.
#' Either `"terminate"` or `"kill"`.
#' If `"terminate"` the workers evaluate the currently running task and then terminate.
#' If `"kill"` the workers are stopped immediately.
reset = function(type = "kill") {
r = self$connector
# stop workers
if (!is.null(type)) self$stop_workers(type = type)
# reset fields set by starting workers
self$processes = NULL
# remove worker info, heartbeat, terminate and kill
walk(self$worker_ids, function(worker_id) {
r$DEL(private$.get_key(worker_id))
r$DEL(private$.get_worker_key("terminate", worker_id))
r$DEL(private$.get_worker_key("kill", worker_id))
r$DEL(private$.get_worker_key("heartbeat", worker_id))
r$DEL(private$.get_worker_key("queued_tasks", worker_id))
r$DEL(private$.get_worker_key("events", worker_id))
})
# remove all tasks
walk(self$tasks, function(key) {
r$DEL(key)
})
# remove lists and sets
r$DEL(private$.get_key("queued_tasks"))
r$DEL(private$.get_key("running_tasks"))
r$DEL(private$.get_key("finished_tasks"))
r$DEL(private$.get_key("failed_tasks"))
r$DEL(private$.get_key("all_tasks"))
r$DEL(private$.get_key("terminate"))
r$DEL(private$.get_key("worker_ids"))
r$DEL(private$.get_key("running_worker_ids"))
r$DEL(private$.get_key("terminated_worker_ids"))
r$DEL(private$.get_key("killed_worker_ids"))
r$DEL(private$.get_key("lost_worker_ids"))
r$DEL(private$.get_key("pre_worker_ids"))
r$DEL(private$.get_key("start_args"))
r$DEL(private$.get_key("terminate_on_idle"))
r$DEL(private$.get_key("local_workers"))
r$DEL(private$.get_key("heartbeat_keys"))
# reset counters and caches
private$.cached_tasks = list()
private$.n_seen_results = 0
return(invisible(self))
},
#' @description
#' Read log messages written with the `lgr` package from a worker.
#'
#' @param worker_ids (`character(1)`)\cr
#' Worker ids.
#' If `NULL` all worker ids are used.
read_log = function(worker_ids = NULL) {
worker_ids = worker_ids %??% self$worker_ids
r = self$connector
cmds = map(worker_ids, function(worker_id) c("LRANGE", private$.get_worker_key("events", worker_id), 0, -1))
worker_logs = set_names(r$pipeline(.commands = cmds), worker_ids)
tab = rbindlist(set_names(map(worker_logs, function(logs) {
rbindlist(map(logs, fromJSON))
}), worker_ids), idcol = "worker_id")
if (nrow(tab)) setkeyv(tab, "timestamp")
tab[]
},
#' @description
#' Print log messages written with the `lgr` package from a worker.
print_log = function() {
r = self$connector
cmds = walk(self$worker_ids, function(worker_id) {
first_event = private$.log_counter[[worker_id]] %??% 0L
log = r$command(c("LRANGE", private$.get_worker_key("events", worker_id), first_event, -1L))
if (length(log)) {
tab = rbindlist(map(log, fromJSON))
set(tab, j = "worker_id", value = worker_id)
pwalk(tab, function(level, logger, timestamp, msg, ...) {
pkg_logger = lgr::get_logger(logger)
pkg_logger$log(level, "[%s] [%s] %s", worker_id, timestamp, msg)
})
private$.log_counter[[worker_id]] = nrow(tab) + first_event
}
})
return(invisible(self))
},
#' @description
#' Pushes a task to the queue.
#' Task is added to queued tasks.
#'
#' @param xss (list of named `list()`)\cr
#' Lists of arguments for the function e.g. `list(list(x1, x2), list(x1, x2)))`.
#' @param extra (`list()`)\cr
#' List of additional information stored along with the task e.g. `list(list(timestamp), list(timestamp)))`.
#' @param seeds (`list()`)\cr
#' List of L'Ecuyer-CMRG seeds for each task e.g `list(list(c(104071, 490840688, 1690070564, -495119766, 503491950, 1801530932, -1629447803)))`.
#' If `NULL` but an initial seed is set, L'Ecuyer-CMRG seeds are generated from the initial seed.
#' If `NULL` and no initial seed is set, no seeds are used for the random number generator.
#' @param timeouts (`integer()`)\cr
#' Timeouts for each task in seconds e.g. `c(10, 15)`.
#' A single number is used as the timeout for all tasks.
#' If `NULL` no timeout is set.
#' @param max_retries (`integer()`)\cr
#' Number of retries for each task.
#' A single number is used as the number of retries for all tasks.
#' If `NULL` tasks are not retried.
#' @param terminate_workers (`logical(1)`)\cr
#' Whether to stop the workers after evaluating the tasks.
#'
#' @return (`character()`)\cr
#' Keys of the tasks.
push_tasks = function(xss, extra = NULL, seeds = NULL, timeouts = NULL, max_retries = NULL, terminate_workers = FALSE) {
assert_list(xss, types = "list")
assert_list(extra, types = "list", null.ok = TRUE)
assert_list(seeds, types = "numeric", null.ok = TRUE)
assert_numeric(timeouts, null.ok = TRUE)
assert_numeric(max_retries, null.ok = TRUE)
assert_flag(terminate_workers)
r = self$connector
lg$debug("Pushing %i task(s) to the shared queue", length(xss))
if (!is.null(private$.seed) && is.null(seeds)) {
lg$debug("Creating %i L'Ecuyer-CMRG seeds", length(xss))
seeds = make_rng_seeds(length(xss), private$.seed)
# store last seed for next push
private$.seed = seeds[[length(seeds)]]
}
# write tasks to hashes
keys = self$write_hashes(
xs = xss,
xs_extra = extra,
seed = seeds,
timeout = timeouts,
max_retries = max_retries)
cmds = list(
c("RPUSH", private$.get_key("all_tasks"), keys),
c("LPUSH", private$.get_key("queued_tasks"), keys))
r$pipeline(.commands = cmds)
if (terminate_workers) r$command(c("SET", private$.get_key("terminate_on_idle"), 1))
return(invisible(keys))
},
#' @description
#' Pushes a task to the queue of a specific worker.
#' Task is added to queued priority tasks.
#' A worker evaluates the tasks in the priority queue before the shared queue.
#' If `priority` is `NA` the task is added to the shared queue.
#' If the worker is lost or worker id is not known, the task is added to the shared queue.
#'
#' @param xss (list of named `list()`)\cr
#' Lists of arguments for the function e.g. `list(list(x1, x2), list(x1, x2)))`.
#' @param extra (`list`)\cr
#' List of additional information stored along with the task e.g. `list(list(timestamp), list(timestamp)))`.
#' @param priority (`character()`)\cr
#' Worker ids to which the tasks should be pushed.
#'
#' @return (`character()`)\cr
#' Keys of the tasks.
push_priority_tasks = function(xss, extra = NULL, priority = NULL) {
assert_list(xss, types = "list")
assert_list(extra, types = "list", null.ok = TRUE)
assert_character(priority, len = length(xss))
# redirect to shared queue when worker is lost or worker id is not known
priority[priority %nin% self$running_worker_ids] = NA_character_
r = self$connector
lg$debug("Pushing %i task(s) to %i priority queue(s) and %i task(s) to the shared queue.",
sum(!is.na(priority)), length(unique(priority[!is.na(priority)])), sum(is.na(priority)))
keys = self$write_hashes(xs = xss, xs_extra = extra)
cmds = pmap(list(priority, keys), function(worker_id, key) {
if (is.na(worker_id)) {
c("LPUSH", private$.get_key("queued_tasks"), key)
} else {
c("LPUSH", private$.get_worker_key("queued_tasks", worker_id), key)
}
})
r$pipeline(.commands = cmds)
r$command(c("RPUSH", private$.get_key("all_tasks"), keys))
return(invisible(keys))
},
#' @description
#' Pushes failed tasks to the data base.
#'
#' @param keys (`character(1)`)\cr
#' Keys of the associated tasks.
#' @param conditions (named `list()`)\cr
#' List of lists of conditions.
push_failed = function(keys, conditions) {
assert_character(keys)
assert_list(conditions, types = "list")
r = self$connector
# write condition to hash
self$write_hashes(condition = conditions, keys = keys)
# move key from running to failed
r$pipeline(.commands = map(keys, function(key) {
c("SMOVE", private$.get_key("running_tasks"), private$.get_key("failed_tasks"), key)
}))
return(invisible(self))
},
#' @description
#' Retry failed tasks.
#'
#' @param keys (`character()`)\cr
#' Keys of the tasks to be retried.
#' @param ignore_max_retries (`logical(1)`)\cr
#' Whether to ignore the maximum number of retries.
#' @param next_seed (`logical(1)`)\cr
#' Whether to change the seed of the task.
retry_tasks = function(keys, ignore_max_retries = FALSE, next_seed = FALSE) {
assert_character(keys)
assert_flag(ignore_max_retries)
assert_flag(next_seed)
tasks = self$read_hashes(keys, fields = c("seed", "max_retries", "n_retries"), flatten = FALSE)
seeds = map(tasks, "seed")
n_retries = map_int(tasks, function(task) task$n_retries %??% 0L)
max_retries = map_dbl(tasks, function(task) task$max_retries %??% Inf)
failed = self$is_failed_task(keys)
retrieable = n_retries < max_retries
if (!all(failed)) lg$error("Not all task(s) failed: %s", str_collapse(keys[!failed]))
if (ignore_max_retries) {
keys = keys[failed]
} else {
if (!all(retrieable)) lg$error("Task(s) reached the maximum number of retries: %s", str_collapse(keys[!retrieable]))
keys = keys[failed & retrieable]
}
if (length(keys)) {
lg$debug("Retry %i task(s): %s", length(keys), str_collapse(keys))
# generate new L'Ecuyer-CMRG seeds
seeds = if (next_seed) map(seeds, function(seed) parallel::nextRNGSubStream(seed))
self$write_hashes(n_retries = n_retries + 1L, seed = seeds, keys = keys)
r = self$connector
r$pipeline(.commands = list(
c("SREM", private$.get_key("failed_tasks"), keys),
c("RPUSH", private$.get_key("queued_tasks"), keys)
))
}
return(invisible(self))
},
#' @description
#' Fetch queued tasks from the data base.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "xs_extra")`.
#'
#' @return `data.table()`\cr
#' Table of queued tasks.
fetch_queued_tasks = function(fields = c("xs", "xs_extra"), data_format = "data.table") {
keys = self$queued_tasks
private$.fetch_tasks(keys, fields, data_format)
},
#' @description
#' Fetch queued priority tasks from the data base.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "xs_extra")`.
#'
#' @return `data.table()`\cr
#' Table of queued priority tasks.
fetch_priority_tasks = function(fields = c("xs", "xs_extra"), data_format = "data.table") {
assert_character(fields)
assert_choice(data_format, c("data.table", "list"))
r = self$connector
cmds = map(self$worker_ids, function(worker_id) c("LRANGE", private$.get_worker_key("queued_tasks", worker_id), "0", "-1"))
if (!length(cmds)) {
data = if (data_format == "list") list() else data.table()
return(data)
}
keys = unlist(r$pipeline(.commands = cmds))
private$.fetch_tasks(keys, fields, data_format)
},
#' @description
#' Fetch running tasks from the data base.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "xs_extra", "worker_extra")`.
#'
#' @return `data.table()`\cr
#' Table of running tasks.
fetch_running_tasks = function(fields = c("xs", "xs_extra", "worker_extra"), data_format = "data.table") {
keys = self$running_tasks
private$.fetch_tasks(keys, fields, data_format)
},
#' @description
#' Fetch finished tasks from the data base.
#' Finished tasks are cached.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "xs_extra", "worker_extra", "ys", "ys_extra")`.
#' @param reset_cache (`logical(1)`)\cr
#' Whether to reset the cache.
#'
#' @return `data.table()`\cr
#' Table of finished tasks.
fetch_finished_tasks = function(fields = c("xs", "ys", "xs_extra", "worker_extra", "ys_extra", "condition"), reset_cache = FALSE, data_format = "data.table") {
keys = if (self$n_finished_tasks > length(private$.cached_tasks)) {
r = self$connector
r$command(c("LRANGE", private$.get_key("finished_tasks"), length(private$.cached_tasks), -1))
}
private$.fetch_cached_tasks(keys, fields, reset_cache, data_format)
},
#' @description
#' Block process until a new finished task is available.
#' Returns all finished tasks or `NULL` if no new task is available after `timeout` seconds.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "xs_extra", "worker_extra", "ys", "ys_extra")`.
#' @param timeout (`numeric(1)`)\cr
#' Time to wait for a result in seconds.
#'
#' @return `data.table()`\cr
#' Table of finished tasks.
wait_for_finished_tasks = function(
fields = c("xs", "ys", "xs_extra", "worker_extra", "ys_extra"),
timeout = Inf,
data_format = "data.table"
) {
assert_number(timeout, lower = 0)
start_time = Sys.time()
lg$debug("Wait for new tasks for at least %s seconds", as.character(timeout))
while(start_time + timeout > Sys.time()) {
if (self$n_finished_tasks > length(private$.cached_tasks)) {
return(self$fetch_finished_tasks(fields, data_format = data_format))
}
Sys.sleep(0.01)
}
NULL
},
#' @description
#' Fetch finished tasks from the data base that finished after the last fetch.
#' Updates the cache of the finished tasks.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#'
#' @return `data.table()`\cr
#' Latest results.
fetch_new_tasks = function(
fields = c("xs", "ys", "xs_extra", "worker_extra", "ys_extra", "condition"),
data_format = "data.table"
) {
assert_character(fields)
assert_choice(data_format, c("data.table", "list"))
r = self$connector
start_time = Sys.time()
# return empty data.table or list if all results are fetched
n_new_results = self$n_finished_tasks - private$.n_seen_results
if (!n_new_results) {
data = if (data_format == "list") list() else data.table()
return(data)
}
# increase seen results counter
private$.n_seen_results = private$.n_seen_results + n_new_results
# fetch finished tasks
data = self$fetch_finished_tasks(fields, data_format = data_format)
tail(data, n_new_results)
},
#' @description
#' Block process until a new finished task is available.
#' Returns new tasks or `NULL` if no new task is available after `timeout` seconds.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "xs_extra", "worker_extra", "ys", "ys_extra")`.
#' @param timeout (`numeric(1)`)\cr
#' Time to wait for new result in seconds.
#'
#' @return `data.table() | list()`.
wait_for_new_tasks = function(
fields = c("xs", "ys", "xs_extra", "worker_extra", "ys_extra", "condition"),
timeout = Inf,
data_format = "data.table"
) {
assert_number(timeout, lower = 0)
start_time = Sys.time()
lg$debug("Wait for new tasks for at least %s seconds", as.character(timeout))
while(start_time + timeout > Sys.time()) {
n_new_results = self$n_finished_tasks - private$.n_seen_results
if (n_new_results) {
return(self$fetch_new_tasks(fields, data_format = data_format))
}
Sys.sleep(0.01)
}
if (data_format == "list") return(NULL)
data.table()
},
#' @description
#' Fetch failed tasks from the data base.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "xs_extra", "worker_extra", "condition"`.
#'
#' @return `data.table()`\cr
#' Table of failed tasks.
fetch_failed_tasks = function(fields = c("xs", "worker_extra", "condition"), data_format = "data.table") {
keys = self$failed_tasks
private$.fetch_tasks(keys, fields, data_format)
},
#' @description
#' Fetch all tasks from the data base.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "xs_extra", "worker_extra", "ys", "ys_extra", "condition", "state")`.
#'
#' @return `data.table()`\cr
#' Table of all tasks.
fetch_tasks = function(fields = c("xs", "ys", "xs_extra", "worker_extra", "ys_extra", "condition"), data_format = "data.table") {
keys = self$tasks
private$.fetch_tasks(keys, fields, data_format)
},
#' @description
#' Fetch tasks with different states from the data base.
#' If tasks with different states are to be queried at the same time, this function prevents tasks from appearing twice.
#' This could be the case if a worker changes the state of a task while the tasks are being fetched.
#' Finished tasks are cached.
#'
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' Defaults to `c("xs", "ys", "xs_extra", "worker_extra", "ys_extra")`.
#' @param states (`character()`)\cr
#' States of the tasks to be fetched.
#' Defaults to `c("queued", "running", "finished", "failed")`.
#' @param reset_cache (`logical(1)`)\cr
#' Whether to reset the cache of the finished tasks.
fetch_tasks_with_state = function(
fields = c("xs", "ys", "xs_extra", "worker_extra", "ys_extra", "condition"),
states = c("queued", "running", "finished", "failed"),
reset_cache = FALSE,
data_format = "data.table"
) {
r = self$connector
assert_subset(states, c("queued", "running", "finished", "failed"), empty.ok = FALSE)
all_keys = private$.tasks_with_state(states, only_new_keys = TRUE)
data = imap(all_keys, function(keys, state) {
if (state == "finished") {
private$.fetch_cached_tasks(keys, fields, reset_cache, data_format)
} else {
private$.fetch_tasks(keys, fields, data_format)
}
})
if (data_format == "list") return(data)
data = rbindlist(data, use.names = TRUE, fill = TRUE, idcol = "state")
data[]
},
#' @description
#' Wait until tasks are finished.
#' The function also unblocks when no worker is running or all tasks failed.
#'
#' @param keys (`character()`)\cr
#' Keys of the tasks to wait for.
#' @param detect_lost_workers (`logical(1)`)\cr
#' Whether to detect failed tasks.
#' Comes with an overhead.
wait_for_tasks = function(keys, detect_lost_workers = FALSE) {
assert_character(keys, min.len = 1)
assert_flag(detect_lost_workers)
lg$debug("Wait for %i task(s)", length(keys))
while (any(keys %nin% c(self$finished_tasks, self$failed_tasks)) && self$n_running_workers > 0) {
if (detect_lost_workers) self$detect_lost_workers()
Sys.sleep(0.01)
}
invisible(self)
},
#' @description
#' Writes R objects to Redis hashes.
#' The function takes the vectors in `...` as input and writes each element as a field-value pair to a new hash.
#' The name of the argument defines the field into which the serialized element is written.
#' For example, `xs = list(list(x1 = 1, x2 = 2), list(x1 = 3, x2 = 4))` writes `serialize(list(x1 = 1, x2 = 2))` at field `xs` into a hash and `serialize(list(x1 = 3, x2 = 4))` at field `xs` into another hash.
#' The function can iterate over multiple vectors simultaneously.
#' For example, `xs = list(list(x1 = 1, x2 = 2), list(x1 = 3, x2 = 4)), ys = list(list(y = 3), list(y = 7))` creates two hashes with the fields `xs` and `ys`.
#' The vectors are recycled to the length of the longest vector.
#' Both lists and atomic vectors are supported.
#' Arguments that are `NULL` are ignored.
#'
#' @param ... (named `list()`)\cr
#' Lists to be written to the hashes.
#' The names of the arguments are used as fields.
#' @param .values (named `list()`)\cr
#' Lists to be written to the hashes.
#' The names of the list are used as fields.
#' @param keys (character())\cr
#' Keys of the hashes.
#' If `NULL` new keys are generated.
#'
#' @return (`character()`)\cr
#' Keys of the hashes.
write_hashes = function(..., .values = list(), keys = NULL) {
# discard empty lists
values = discard(c(list(...), .values), function(l) !length(l))
fields = names(values)
n_hashes = max(map_int(values, length))
if (is.null(keys)) {
keys = UUIDgenerate(n = n_hashes)
} else {
assert_character(keys, min.len = n_hashes)
}
lg$debug("Writting %i hash(es) with %i field(s)", length(keys), length(fields))
# construct list of redis commands to write hashes
cmds = pmap(c(list(key = keys), values), function(key, ...) {
# serialize value of field
bin_values = map(list(...), redux::object_to_bin)
lg$debug("Serialzing %i value(s) to %s", length(bin_values), format(Reduce(`+`, map(bin_values, object.size))))
# merge fields and values alternatively
# c and rbind are fastest option in R
# data is not copied
c("HSET", key, c(rbind(fields, bin_values)))
})
self$connector$pipeline(.commands = cmds)
invisible(keys)
},
#' @description
#' Reads R Objects from Redis hashes.
#' The function reads the field-value pairs of the hashes stored at `keys`.
#' The values of a hash are deserialized and combined to a list.
#' If `flatten` is `TRUE`, the values are flattened to a single list e.g. list(xs = list(x1 = 1, x2 = 2), ys = list(y = 3)) becomes list(x1 = 1, x2 = 2, y = 3).
#' The reading functions combine the hashes to a table where the names of the inner lists are the column names.
#' For example, `xs = list(list(x1 = 1, x2 = 2), list(x1 = 3, x2 = 4)), ys = list(list(y = 3), list(y = 7))` becomes `data.table(x1 = c(1, 3), x2 = c(2, 4), y = c(3, 7))`.
#'
#' @param keys (`character()`)\cr
#' Keys of the hashes.
#' @param fields (`character()`)\cr
#' Fields to be read from the hashes.
#' @param flatten (`logical(1)`)\cr
#' Whether to flatten the list.
#'
#' @return (list of `list()`)\cr
#' The outer list contains one element for each key.
#' The inner list is the combination of the lists stored at the different fields.
read_hashes = function(keys, fields, flatten = TRUE) {
lg$debug("Reading %i hash(es) with %i field(s)", length(keys), length(fields))
# construct list of redis commands to read hashes
cmds = map(keys, function(key) c("HMGET", key, fields))
# list of hashes
# first level contains hashes
# second level contains fields
# the values of the fields are serialized lists and atomics
hashes = self$connector$pipeline(.commands = cmds)
if (flatten) {
# unserialize elements of the second level
# flatten elements of the third level to one list
# using mapply instead of pmap is faster
map(hashes, function(hash) unlist(.mapply(function(bin_value, field) {
# unserialize value
value = safe_bin_to_object(bin_value)
# wrap atomic values in list and name by field
if (is.atomic(value) && !is.null(value)) {
# list column or column with type of value
if (length(value) > 1) value = list(value)
value = setNames(list(value), field)
}
value
}, list(bin_value = hash, field = fields), NULL), recursive = FALSE))
} else {
# unserialize elements of the second level
map(hashes, function(hash) setNames(map(hash, function(bin_value) {
safe_bin_to_object(bin_value)
}), fields))
}
},
#' @description
#' Reads a single Redis hash and returns the values as a list named by the fields.
#'
#' @param key (`character(1)`)\cr
#' Key of the hash.
#' @param fields (`character()`)\cr
#' Fields to be read from the hash.
#'
#' @return (list of `list()`)\cr
#' The outer list contains one element for each key.
#' The inner list is the combination of the lists stored at the different fields.
read_hash = function(key, fields) {
lg$debug("Reading hash with %i field(s)", length(fields))
setNames(map(self$connector$HMGET(key, fields), safe_bin_to_object), fields)
},
#' @description
#' Checks whether tasks have the status `"running"`.
#'
#' @param keys (`character()`)\cr
#' Keys of the tasks.
is_running_task = function(keys) {
r = self$connector
if (!length(keys)) return(logical(0))
as.logical(r$command(c("SMISMEMBER", private$.get_key("running_tasks"), keys)))
},
#' @description
#' Checks whether tasks have the status `"failed"`.
#'
#' @param keys (`character()`)\cr
#' Keys of the tasks.
is_failed_task = function(keys) {
r = self$connector
if (!length(keys)) return(logical(0))
as.logical(r$command(c("SMISMEMBER", private$.get_key("failed_tasks"), keys)))
},
#' @description
#' Returns keys of requested states.
#'
#' @param states (`character()`)\cr
#' States of the tasks.
#'
#' @return (Named list of `character()`).
tasks_with_state = function(states) {
r = self$connector
assert_subset(states, c("queued", "running", "finished", "failed"))
private$.tasks_with_state(states)
}
),
active = list(
#' @field n_workers (`integer(1)`)\cr
#' Number of workers.
n_workers = function(rhs) {
assert_ro_binding(rhs)
r = self$connector
as.integer(r$SCARD(private$.get_key("worker_ids"))) %??% 0
},
#' @field n_running_workers (`integer(1)`)\cr
#' Number of running workers.
n_running_workers = function(rhs) {
assert_ro_binding(rhs)
r = self$connector
as.integer(r$SCARD(private$.get_key("running_worker_ids"))) %??% 0
},
#' @field n_terminated_workers (`integer(1)`)\cr
#' Number of terminated workers.
n_terminated_workers = function(rhs) {
assert_ro_binding(rhs)
r = self$connector
as.integer(r$SCARD(private$.get_key("terminated_worker_ids"))) %??% 0
},
#' @field n_killed_workers (`integer(1)`)\cr
#' Number of killed workers.
n_killed_workers = function(rhs) {
assert_ro_binding(rhs)
r = self$connector
as.integer(r$SCARD(private$.get_key("killed_worker_ids"))) %??% 0
},
#' @field n_lost_workers (`integer(1)`)\cr
#' Number of lost workers.
#' Run `$detect_lost_workers()` to update the number of lost workers.
n_lost_workers = function(rhs) {
assert_ro_binding(rhs)
r = self$connector
as.integer(r$SCARD(private$.get_key("lost_worker_ids"))) %??% 0
},
#' @field n_pre_workers (`integer(1)`)\cr
#' Number of workers that are not yet completely started.
n_pre_workers = function(rhs) {
assert_ro_binding(rhs)
r = self$connector
as.integer(r$SCARD(private$.get_key("pre_worker_ids"))) %??% 0
},
#' @field worker_ids (`character()`)\cr
#' Ids of workers.
worker_ids = function() {
r = self$connector
unlist(r$SMEMBERS(private$.get_key("worker_ids")))
},
#' @field running_worker_ids (`character()`)\cr
#' Ids of running workers.
running_worker_ids = function() {
r = self$connector
unlist(r$SMEMBERS(private$.get_key("running_worker_ids")))
},
#' @field terminated_worker_ids (`character()`)\cr
#' Ids of terminated workers.
terminated_worker_ids = function() {
r = self$connector
unlist(r$SMEMBERS(private$.get_key("terminated_worker_ids")))
},
#' @field killed_worker_ids (`character()`)\cr
#' Ids of killed workers.
killed_worker_ids = function() {
r = self$connector
unlist(r$SMEMBERS(private$.get_key("killed_worker_ids")))
},
#' @field lost_worker_ids (`character()`)\cr
#' Ids of lost workers.
lost_worker_ids = function() {
r = self$connector
unlist(r$SMEMBERS(private$.get_key("lost_worker_ids")))
},
#' @field pre_worker_ids (`character()`)\cr
#' Ids of workers that are not yet completely started.
pre_worker_ids = function() {
r = self$connector
unlist(r$SMEMBERS(private$.get_key("pre_worker_ids")))
},
#' @field tasks (`character()`)\cr
#' Keys of all tasks.
tasks = function() {
r = self$connector
unlist(r$LRANGE(private$.get_key("all_tasks"), 0, -1))
},
#' @field queued_tasks (`character()`)\cr
#' Keys of queued tasks.
queued_tasks = function() {
r = self$connector
unlist(r$LRANGE(private$.get_key("queued_tasks"), 0, -1))
},
#' @field running_tasks (`character()`)\cr
#' Keys of running tasks.
running_tasks = function() {
r = self$connector
unlist(r$SMEMBERS(private$.get_key("running_tasks")))
},
#' @field finished_tasks (`character()`)\cr
#' Keys of finished tasks.
finished_tasks = function() {
r = self$connector
unlist(r$LRANGE(private$.get_key("finished_tasks"), 0, -1))
},
#' @field failed_tasks (`character()`)\cr
#' Keys of failed tasks.
failed_tasks = function() {
r = self$connector
unlist(r$SMEMBERS(private$.get_key("failed_tasks")))
},
#' @field n_queued_tasks (`integer(1)`)\cr
#' Number of queued tasks.
n_queued_tasks = function() {
r = self$connector
as.integer(r$LLEN(private$.get_key("queued_tasks"))) %??% 0
},
#' @field n_queued_priority_tasks (`integer(1)`)\cr
#' Number of queued priority tasks.
n_queued_priority_tasks = function() {
r = self$connector
cmds = map(self$worker_ids, function(worker_id) c("LLEN", private$.get_worker_key("queued_tasks", worker_id)))
sum(unlist(r$pipeline(.commands = cmds))) %??% 0
},
#' @field n_running_tasks (`integer(1)`)\cr
#' Number of running tasks.
n_running_tasks = function() {
r = self$connector
as.integer(r$SCARD(private$.get_key("running_tasks"))) %??% 0
},
#' @field n_finished_tasks (`integer(1)`)\cr
#' Number of finished tasks.
n_finished_tasks = function() {
r = self$connector
as.integer(r$LLEN(private$.get_key("finished_tasks"))) %??% 0
},
#' @field n_failed_tasks (`integer(1)`)\cr
#' Number of failed tasks.
n_failed_tasks = function() {
r = self$connector
as.integer(r$SCARD(private$.get_key("failed_tasks"))) %??% 0
},
#' @field n_tasks (`integer(1)`)\cr
#' Number of all tasks.
n_tasks = function() {
r = self$connector
as.integer(r$LLEN(private$.get_key("all_tasks"))) %??% 0
},
#' @field worker_info ([data.table::data.table()])\cr
#' Contains information about the workers.
worker_info = function(rhs) {
assert_ro_binding(rhs)
if (!self$n_workers) return(data.table())
r = self$connector
fields = c("worker_id", "pid", "remote", "hostname", "heartbeat")
worker_info = set_names(rbindlist(map(self$worker_ids, function(worker_id) {
r$command(c("HMGET", private$.get_key(worker_id), fields))
})), fields)
# fix type
worker_info[, remote := as.logical(remote)][]
worker_info[, pid := as.integer(pid)][]
worker_info
},
#' @field worker_states ([data.table::data.table()])\cr
#' Contains the states of the workers.
worker_states = function(rhs) {
assert_ro_binding(rhs)
r = self$connector
worker_ids = list(
running = data.table(worker_id = self$running_worker_ids),
terminated = data.table(worker_id = self$terminated_worker_ids),
killed = data.table(worker_id = self$killed_worker_ids),
lost = data.table(worker_id = self$lost_worker_ids)
)
rbindlist(worker_ids, idcol = "state", use.names = TRUE, fill = TRUE)
},
#' @field all_workers_terminated (`logical(1)`)\cr
#' Whether all workers are terminated.
all_workers_terminated = function(rhs) {
assert_ro_binding(rhs)
self$n_workers == self$n_terminated_workers
},
#' @field all_workers_lost (`logical(1)`)\cr
#' Whether all workers are lost.
#' Runs `$detect_lost_workers()` to detect lost workers.
all_workers_lost = function(rhs) {
assert_ro_binding(rhs)
self$detect_lost_workers()
self$n_workers == self$n_lost_workers
},
#' @field priority_info ([data.table::data.table])\cr
#' Contains the number of tasks in the priority queues.
priority_info = function(rhs) {
assert_ro_binding(rhs)
r = self$connector
map_dtr(self$worker_ids, function(worker_id) {
list(worker_id = worker_id, n_tasks = as.integer(r$LLEN(private$.get_worker_key("queued_tasks", worker_id))))
})
},
#' @field snapshot_schedule (`character()`)\cr
#' Set a snapshot schedule to periodically save the data base on disk.
#' For example, `c(60, 1000)` saves the data base every 60 seconds if there are at least 1000 changes.
#' Overwrites the redis configuration file.
#' Set to `NULL` to disable snapshots.
#' For more details see [redis.io](https://redis.io/docs/latest/operate/oss_and_stack/management/persistence/).
snapshot_schedule = function(rhs) {
if (missing(rhs)) return(private$.snapshot_schedule)
assert_integerish(rhs, min.len = 2, null.ok = TRUE)
if (is.null(rhs)) rhs = ""
r = self$connector
r$command(c("CONFIG", "SET", "save", str_collapse(rhs, sep = " ")))
private$.snapshot_schedule = rhs
},
#' @field redis_info (`list()`)\cr
#' Information about the Redis server.
redis_info = function() {
redux::redis_info(self$connector)
}
),
private = list(
# cache for finished tasks
.cached_tasks = list(),
# counter of the seen results for the latest results methods
.n_seen_results = 0,
.snapshot_schedule = NULL,
.seed = NULL,
# counter for printed logs
# zero based
.log_counter = list(),
# prefix key with instance id
.get_key = function(key) {
sprintf("%s:%s", self$network_id, key)
},
# prefix key with instance id and worker id
.get_worker_key = function(key, worker_id = NULL) {
worker_id = worker_id %??% self$worker_id
sprintf("%s:%s:%s", self$network_id, worker_id, key)
},
# push worker config to redis
.push_worker_config = function(
globals = NULL,
packages = NULL,
heartbeat_period = NULL,
heartbeat_expire = NULL,
lgr_thresholds = NULL,
lgr_buffer_size = 0,
worker_loop = worker_loop_default,
...
) {
assert_character(globals, null.ok = TRUE)
assert_character(packages, null.ok = TRUE)
assert_count(heartbeat_period, positive = TRUE, null.ok = TRUE)
assert_count(heartbeat_expire, positive = TRUE, null.ok = TRUE)
if (!is.null(heartbeat_period)) require_namespaces("callr")
lgr_thresholds = assert_vector(lgr_thresholds, names = "named", null.ok = TRUE) %??% rush_env$lgr_thresholds
assert_count(lgr_buffer_size)
assert_function(worker_loop)
dots = list(...)
r = self$connector
lg$debug("Pushing worker config to Redis")
# find globals
if (!is.null(globals)) {
global_names = if (!is.null(names(globals))) names(globals) else globals
globals = set_names(map(globals, function(global) {
value = get(global, envir = parent.frame(), inherits = TRUE)
if (is.null(value)) stopf("Global `%s` not found", global)
value
}), global_names)
}
# arguments needed for initializing RushWorker
worker_args = list(
heartbeat_period = heartbeat_period,
heartbeat_expire = heartbeat_expire,
lgr_thresholds = lgr_thresholds,
lgr_buffer_size = lgr_buffer_size)
# arguments needed for initializing the worker
start_args = list(
worker_loop = worker_loop,
worker_loop_args = dots,
globals = globals,
packages = c("rush", packages),
worker_args = worker_args)
# serialize and push arguments to redis
# the serialize functions warns that a required package may not be available when loading the start args
# we ensure that the package is available
bin_start_args = suppressWarnings(redux::object_to_bin(start_args))
if (object.size(bin_start_args) > 5369e5) {
if (is.null(rush_env$large_objects_path)) {
stop("Worker configuration is larger than 512 MiB. Redis does not support values larger than 512 MiB. Set a path for large objects to store on disk.")
} else {
lg$debug("Worker configuration is larger than 512 MiB. Writing to disk.")
bin_start_args = redux::object_to_bin(store_large_object(start_args, path = rush_env$large_objects_path))
}
}
lg$debug("Serializing worker configuration to %s", format(object.size(bin_start_args)))
r$command(list("SET", private$.get_key("start_args"), bin_start_args))
},
# get task keys
# finished tasks keys can be restricted to uncached tasks
.tasks_with_state = function(states, only_new_keys = FALSE) {
r = self$connector
# optionally limit finished tasks to uncached tasks
start_finished_tasks = if (only_new_keys) length(private$.cached_tasks) else 0
# get keys of tasks with different states in one transaction
r$MULTI()
if ("queued" %in% states) r$LRANGE(private$.get_key("queued_tasks"), 0, -1)
if ("running" %in% states) r$SMEMBERS(private$.get_key("running_tasks"))
if ("finished" %in% states) r$LRANGE(private$.get_key("finished_tasks"), start_finished_tasks, -1)
if ("failed" %in% states) r$SMEMBERS(private$.get_key("failed_tasks"))
keys = r$EXEC()
keys = map(keys, unlist)
states_order = c("queued", "running", "finished", "failed")
set_names(keys, states_order[states_order %in% states])
},
# fetch tasks
.fetch_tasks = function(keys, fields, data_format = "data.table") {
r = self$connector
assert_character(fields)
assert_choice(data_format, c("data.table", "list"))
if (!length(keys)) {
data = if (data_format == "list") list() else data.table()
return(data)
}
data = self$read_hashes(keys, fields)
lg$debug("Fetching %i task(s)", length(data))
if (data_format == "list") return(set_names(data, keys))
tab = rbindlist(data, use.names = TRUE, fill = TRUE)
tab[, keys := unlist(keys)]
tab[]
},
# fetch and cache tasks
.fetch_cached_tasks = function(new_keys, fields, reset_cache = FALSE, data_format = "data.table") {
r = self$connector
assert_flag(reset_cache)
assert_choice(data_format, c("data.table", "list"))
if (reset_cache) private$.cached_tasks = list()
lg$debug("Reading %i cached task(s)", length(private$.cached_tasks))
if (length(new_keys)) {
lg$debug("Caching %i new task(s)", length(new_keys))
# bind new results to cached results
data = set_names(self$read_hashes(new_keys, fields), new_keys)
private$.cached_tasks = c(private$.cached_tasks, data)
}
lg$debug("Fetching %i task(s)", length(private$.cached_tasks))
if (data_format == "list") return(private$.cached_tasks)
tab = rbindlist(private$.cached_tasks, use.names = TRUE, fill = TRUE)
if (nrow(tab)) tab[, keys := names(private$.cached_tasks)]
tab[]
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.