Nothing
#' @title Unormalized Spectral Clustering Ng.
#' @author Emilie Poisson Caillault and Erwan Vincent
#' @description The function, for a given similarity matrix, will separate the data using a spectral space. It does not normalize the Laplacian matrix compared to other algorithms
#' @param W Gram Similarity Matrix.
#' @param K number of cluster to obtain.
#' @param flagDiagZero if True, Put zero on the similarity matrix W.
#' @param verbose To output the verbose in the terminal.
#' @return returns a list containing the following elements:
#' \itemize{
#' \item{cluster: }{a vector containing the cluster}
#' \item{eigenVect: }{a vector containing the eigenvectors}
#' \item{eigenVal: }{a vector containing the eigenvalues}
#' }
#' @examples
#' ### Example 1: 2 disks of the same size
#' n<-100 ; r1<-1
#' x<-(runif(n)-0.5)*2;
#' y<-(runif(n)-0.5)*2
#' keep1<-which((x*2+y*2)<(r1*2))
#' disk1<-data.frame(x+3*r1,y)[keep1,]
#' disk2 <-data.frame(x-3*r1,y)[keep1,]
#' sameTwoDisks <- rbind(disk1,disk2)
#' W <- compute.similarity.ZP(scale(sameTwoDisks))
#' res <- UnormalizedSC(W,K=2,flagDiagZero=TRUE,verbose=TRUE)
#' plot(sameTwoDisks, col = res$cluster)
#' plot(res$eigenVect[,1:2], col = res$cluster, main="spectral space",
#' xlim=c(-1,1),ylim=c(-1,1)); points(0,0,pch='+');
#' plot(res$eigenVal, main="Laplacian eigenvalues",pch='+');
#'
#' ### Example 2: Speed and Stopping Distances of Cars
#' W <- compute.similarity.ZP(scale(iris[,-5]))
#' res <- UnormalizedSC(W,K=2,flagDiagZero=TRUE,verbose=TRUE)
#' plot(iris, col = res$cluster)
#' plot(res$eigenVect[,1:2], col = res$cluster, main="spectral space",
#' xlim=c(-1,1),ylim=c(-1,1)); points(0,0,pch='+');
#' plot(res$eigenVal, main="Laplacian eigenvalues",pch='+');
UnormalizedSC <- function(W, K=5, flagDiagZero=FALSE, verbose = FALSE){
#Checking the similarity matrix
W <- checking.gram.similarityMatrix(W, flagDiagZero=flagDiagZero, verbose = verbose)
#Calculation of the degree matrix
if(verbose){message("CALCULATION OF THE DEGREE MATRIX")}
D <- diag(rowSums(W))
if(verbose){print(D)}
#Calculation of the Laplacian matrix
if(verbose){message("CALCULATION OF THE LAPLACIAN MATRIX")}
L <- D - W
if(verbose){print(L)}
if(verbose){message("CALCULATION OF THE EIGEN VECTORS AND VALUES")}
U <- eigen(L)
if(verbose){
message("EIGEN VALUES = ")
print(U$values)
message("EIGEN VECTOR = ")
print(U$vector)
}
#Calculation of the eigen vectors and values
if(verbose){message(paste(K, "EIGEN VECTORS SELECTION"))}
V <- U$vectors[ , ((ncol(L)-K+1):ncol(L))]
if(verbose){print(V)}
#K-means clustering
if(verbose){message("CUTTING THE CLUSTER WITH KMEANS")}
cluster <- kmeans(V, K)$cluster
if(verbose){cat("cluster = ", cluster, "\n")}
out <- list(cluster = cluster, eigenVect = U$vector, eigenVal = U$values)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.