Nothing
#' @describeIn hplm Print results
#' @inheritParams print.sc
#' @param casewise Returns the effect estimations for each case
#' @param bcsmd If TRUE, reports between-case standardized mean differences.
#' @order 2
#' @param x An object returned by [hplm()]
#' @export
print.sc_hplm <- function(x,
digits = 3,
bcsmd = FALSE,
casewise = FALSE,
...) {
out <- .output_hplm(x, casewise = casewise, bcsmd = bcsmd)
cat("Hierarchical Piecewise Linear Regression\n\n")
cat("Estimation method", x$model$estimation.method,"\n")
cat("Contrast model: ", out$model, "\n", sep = "")
cat(x$N, "Cases\n\n")
cat("AIC = ", out$AIC, ", BIC = ", out$BIC, "\n", sep = "")
if (!is.null(out$icc)) cat(out$icc, "\n")
cat("\nFixed effects (", out$formula$fixed, ")\n\n", sep = "")
print(round_numeric(out$fixed, digits))
cat("\nRandom effects (", out$formula$random ,")\n\n", sep = "")
print(format_table(out$random, digits = digits, integer = "df"), ...)
if (!is.null(out$correlation)) {
cat("\nCorrelation:\n")
print(out$correlation)
}
if (!is.null(out$bc_smd)) {
cat("\nBetween-Case Standardized Mean Difference\n\n")
print(out$bc_smd, digits = digits, row.names = FALSE)
}
if (!is.null(out$casewise)) {
cat("\nCasewise estimation of effects\n\n")
print(out$casewise, row.names = FALSE)
}
}
#' @describeIn hplm Export results as html table (see [export()])
#' @order 3
#' @inheritParams export
#' @export
export.sc_hplm <- function(object,
caption = NA,
footnote = NA,
filename = NA,
round = 2,
nice = TRUE,
casewise = FALSE,
...) {
if (is.na(caption)) {
caption <- paste0(
"Hierarchical Piecewise Linear Regression predicting variable '",
attr(object, opt("dv")), "'"
)
}
footnote <- c(
paste0("Estimation method ", object$model$estimation.method),
str_contrasts(object$model$interaction.method, object$contrast),
paste0("N = ", object$N, " cases")
)
if (casewise) {
out <- .export_casewise(object, caption, footnote, filename, round)
return(out)
}
results <- .output_hplm(object)
out <- results$fixed
dat_random <- results$random
if (nice) {
out$p <- .nice_p(out$p)
if (!is.null(dat_random$p)) dat_random$p <- .nice_p(dat_random$p)
}
out[, ] <- lapply(out[, ], function(x)
if (inherits(x, "numeric")) as.character(round(x, round)) else x
)
out <- cbind(Predictors = rownames(out), out, stringsAsFactors = FALSE)
rownames(out) <- NULL
dat_random[, ] <- lapply(dat_random, function(x)
if (inherits(x, "numeric")) as.character(round(x, round)) else x
)
dat_random <- cbind(
" " = rownames(dat_random),
dat_random,
stringsAsFactors = FALSE
)
rownames(dat_random) <- NULL
nrow_out <- nrow(out)
nrow_random <- nrow(dat_random)
tmp_row <- (nrow_out + 1):(nrow_out + nrow_random + 1 + 3)
out[tmp_row, ] <- ""
tmp_row <- (nrow_out + 1):(nrow_out + nrow_random + 1)
out[tmp_row, 1:ncol(dat_random)] <- rbind(
colnames(dat_random),
dat_random,
stringsAsFactors = FALSE
)
out[nrow_out + nrow_random + 2, 1:2] <- c(
"AIC", as.character(round(results$AIC, 1))
)
out[nrow_out + nrow_random + 3, 1:2] <- c(
"BIC", as.character(round(results$BIC, 1))
)
if (!is.null(object$ICC)) {
out[nrow_out + nrow_random + 4, 1:4] <-
c(
"ICC",
as.character(round(object$ICC$value, 2)),
paste0("L = ", round(object$ICC$L, 1)),
paste0("p ", .nice_p(object$ICC$p))
)
}
table <- .create_table(
out,
caption = caption,
footnote = footnote,
row_group = list(
"Fixed effects" = 1: nrow_out,
"Random effects" = (nrow_out + 1) : (nrow(out) - 3),
"Model" = (nrow(out) - 2) : nrow(out)
)
)
if (getOption("scan.export.engine") == "kable") {
table <- table |>
#pack_rows("Fixed effects", 1, nrow_out, indent = FALSE) |>
pack_rows("\nRandom effects", nrow_out + 1, nrow(out), indent = FALSE) |>
pack_rows("\nModel", nrow(out) - 2, nrow(out), indent = FALSE) |>
#row_spec(nrow_out + nrow(dat_random) + 1, hline_after = TRUE) |>
row_spec(nrow_out, hline_after = TRUE)
}
if (!is.na(filename)) .save_export(table, filename)
table
}
.export_casewise <- function(object,
caption = NA,
footnote = NA,
filename = NA,
round = 2) {
out <- coef(object, casewise = TRUE)
if (getOption("scan.export.engine") == "kable") {
table <- .create_table(
out,
caption = caption,
footnote = footnote
)
}
if (getOption("scan.export.engine") == "gt") {
table <- export_table_gt(
out, title = caption, footnote = footnote,
decimals = round
)
}
if (!is.na(filename)) .save_export(table, filename)
table
}
.output_hplm <- function(x, casewise = FALSE, bcsmd = FALSE) {
out <- list()
summary_model <- summary(x$hplm)
out$AIC <- summary_model$AIC
out$BIC <- summary_model$BIC
out$formula$fixed <- deparse(x$model$fixed)
out$formula$random <- deparse(x$model$random)
out$model <- paste0(
x$model$interaction.method, " / ",
paste0(names(x$contrast), ": ",x$contrast, collapse = ", ")
)
if (x$model$ICC) {
out$icc <- sprintf("ICC = %.3f; L = %.1f; p = %.3f",
x$ICC$value, x$ICC$L, x$ICC$p)
}
# fixed ----
md <- as.data.frame(summary_model$tTable)
colnames(md) <- c("B", "SE", "df", "t", "p")
row.names(md) <- rename_predictors(row.names(md), x)
out$fixed <- md
# random -----
sd <- round(as.numeric(VarCorr(x$hplm)[,"StdDev"]), 3)
md <- data.frame("SD" = sd)
row.names(md) <- rename_predictors(names(VarCorr(x$hplm)[, 2]), x)
if (x$model$lr.test) {
if (is.null(x$LR.test[[1]]$L.Ratio)) {
x$LR.test[[1]]$L.Ratio <- NA
x$LR.test[[1]]$"p-value" <- NA
x$LR.test[[1]]$df <- NA
}
md$L <- c(unlist(lapply(x$LR.test, function(x) x$L.Ratio[2])), NA)
md$df <- c(unlist(lapply(x$LR.test, function(x) x$df[2] - x$df[1])), NA)
md$p <- c(unlist(lapply(x$LR.test, function(x) x$"p-value"[2])), NA)
}
out$random <- md
# correlation ----
cov_matrix <- getVarCov(x$hplm)
var_sd <- sqrt(diag(cov_matrix))
cor_matrix <- cov_matrix / (var_sd %o% var_sd)
cor_matrix <- as.data.frame(round(cor_matrix[,], 2))
row.names(cor_matrix) <- rename_predictors(rownames(cor_matrix), x)
colnames(cor_matrix) <- rename_predictors(colnames(cor_matrix), x)
cor_matrix[upper.tri(cor_matrix, diag = TRUE)] <- ""
cor_matrix <- cor_matrix[-1,-ncol(cor_matrix), drop = FALSE]
if (nrow(cor_matrix) > 0) out$correlation <- cor_matrix
# casewise ------
if (casewise) out$casewise <- coef(x, casewise = TRUE)
# bcsmd ----
if (bcsmd) {
out$bc_smd <- between_smd(x)$models[[1]]
}
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.