Nothing
## ----setup, echo=FALSE, warning=FALSE-----------------------------------------
library(knitr)
htmltools::tagList(rmarkdown::html_dependency_font_awesome())
# set dpi
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
dpi = 60
)
## ----install, eval=FALSE------------------------------------------------------
# # install via CRAN (v0.5.0) # old version, it's better to install via Github
# install.packages("scfetch")
# # if you install from CRAN, you should install the following packages
# # install.packages("devtools") #In case you have not installed it.
# devtools::install_github("alexvpickering/GEOfastq") # download fastq
# devtools::install_github("cellgeni/sceasy") # format conversion
# devtools::install_github("mojaveazure/seurat-disk") # format conversion
# devtools::install_github("satijalab/seurat-wrappers") # format conversion
#
# # install via Github (v0.5.0)
# devtools::install_github("showteeth/scfetch")
## ----library, message=FALSE, warning=FALSE------------------------------------
library("scfetch")
## ----prepare_run, eval=FALSE--------------------------------------------------
# GSE130636.runs <- ExtractRun(acce = "GSE130636", platform = "GPL20301")
## ----dwonload_sra, eval=FALSE-------------------------------------------------
# # a small test
# GSE130636.runs <- GSE130636.runs[GSE130636.runs$run %in% c("SRR9004346", "SRR9004351"), ]
# # download, you may need to set prefetch.path
# out.folder <- tempdir()
# GSE130636.down <- DownloadSRA(
# gsm.df = GSE130636.runs,
# out.folder = out.folder
# )
# # GSE130636.down is null or dataframe contains failed runs
## ----split_sra, eval=FALSE----------------------------------------------------
# # parallel-fastq-dump requires sratools.path
# # you may need to set split.cmd.path and sratools.path
# sra.folder <- tempdir()
# GSE130636.split <- SplitSRA(
# sra.folder = sra.folder,
# fastq.type = "10x", split.cmd.threads = 4
# )
## ----prepare_run_bam, eval=FALSE----------------------------------------------
# GSE138266.runs <- ExtractRun(acce = "GSE138266", platform = "GPL18573")
## ----dwonload_bam, eval=FALSE-------------------------------------------------
# # a small test
# GSE138266.runs <- GSE138266.runs[GSE138266.runs$run %in% c("SRR10211566"), ]
# # download, you may need to set prefetch.path
# out.folder <- tempdir()
# GSE138266.down <- DownloadBam(
# gsm.df = GSE138266.runs,
# out.folder = out.folder
# )
# # GSE138266.down is null or dataframe contains failed runs
## ----convert_bam_fastq, eval=FALSE--------------------------------------------
# bam.folder <- tempdir()
# # you may need to set bamtofastq.path and bamtofastq.paras
# GSE138266.convert <- Bam2Fastq(
# bam.folder = bam.folder
# )
## ----geo_meta, eval=FALSE-----------------------------------------------------
# # extract metadata of specified platform
# GSE200257.meta <- ExtractGEOMeta(acce = "GSE200257", platform = "GPL24676")
# # set VROOM_CONNECTION_SIZE to avoid error: Error: The size of the connection buffer (786432) was not large enough
# Sys.setenv("VROOM_CONNECTION_SIZE" = 131072 * 60)
# # extract metadata of all platforms
# GSE94820.meta <- ExtractGEOMeta(acce = "GSE94820", platform = NULL)
## ----geo_parse, eval=FALSE----------------------------------------------------
# # for cellranger output
# out.folder <- tempdir()
# GSE200257.seu <- ParseGEO(
# acce = "GSE200257", platform = NULL, supp.idx = 1, down.supp = TRUE, supp.type = "10x",
# out.folder = out.folder
# )
# # for count matrix, no need to specify out.folder, download count matrix to tmp folder
# GSE94820.seu <- ParseGEO(acce = "GSE94820", platform = NULL, supp.idx = 1, down.supp = TRUE, supp.type = "count")
## ----panglaodb_summary, eval=FALSE--------------------------------------------
# # use cached metadata
# StatDBAttribute(df = PanglaoDBMeta, filter = c("species", "protocol"), database = "PanglaoDB")
## ----panglaodb_meta, eval=FALSE-----------------------------------------------
# hsa.meta <- ExtractPanglaoDBMeta(
# species = "Homo sapiens", protocol = c("Smart-seq2", "10x chromium"),
# show.cell.type = TRUE, cell.num = c(1000, 2000)
# )
## ----panglaodb_celltype, eval=FALSE-------------------------------------------
# hsa.composition <- ExtractPanglaoDBComposition(species = "Homo sapiens", protocol = c("Smart-seq2", "10x chromium"))
## ----panglaodb_parse, eval=FALSE----------------------------------------------
# # small test
# hsa.seu <- ParsePanglaoDB(hsa.meta[1:3, ], merge = TRUE)
## ----cb_show, eval=FALSE------------------------------------------------------
# json.folder <- tempdir()
# # first time run, the json files are stored under json.folder
# # ucsc.cb.samples = ShowCBDatasets(lazy = TRUE, json.folder = json.folder, update = TRUE)
#
# # second time run, load the downloaded json files
# ucsc.cb.samples <- ShowCBDatasets(lazy = TRUE, json.folder = json.folder, update = FALSE)
#
# # always read online
# # ucsc.cb.samples = ShowCBDatasets(lazy = FALSE)
## ----cb_show_detail, eval=FALSE-----------------------------------------------
# # the number of datasets
# nrow(ucsc.cb.samples)
#
# # available species
# unique(unlist(sapply(unique(gsub(pattern = "\\|parent", replacement = "", x = ucsc.cb.samples$organisms)), function(x) {
# unlist(strsplit(x = x, split = ", "))
# })))
## ----cb_summary, eval=FALSE---------------------------------------------------
# StatDBAttribute(df = ucsc.cb.samples, filter = c("organism", "organ"), database = "UCSC")
## ----cb_extract, eval=FALSE---------------------------------------------------
# hbb.sample.df <- ExtractCBDatasets(all.samples.df = ucsc.cb.samples, organ = c("brain", "blood"), organism = "Human (H. sapiens)", cell.num = c(1000, 2000))
## ----cb_celltype, eval=FALSE--------------------------------------------------
# hbb.sample.ct <- ExtractCBComposition(json.folder = json.folder, sample.df = hbb.sample.df)
## ----cb_parse, eval=FALSE-----------------------------------------------------
# hbb.sample.seu <- ParseCBDatasets(sample.df = hbb.sample.df)
## ----zenodo_meta, eval=FALSE--------------------------------------------------
# # single doi
# zebrafish.df <- ExtractZenodoMeta(doi = "10.5281/zenodo.7243603")
#
# # vector dois
# multi.dois <- ExtractZenodoMeta(doi = c("1111", "10.5281/zenodo.7243603", "10.5281/zenodo.7244441"))
## ----zenodo_parse, eval=FALSE-------------------------------------------------
# out.folder <- tempdir()
# multi.dois.parse <- ParseZenodo(
# doi = c("1111", "10.5281/zenodo.7243603", "10.5281/zenodo.7244441"),
# file.ext = c("rdata", "rds"), out.folder = out.folder
# )
## ----cellxgene_all, eval=FALSE------------------------------------------------
# # all available datasets
# all.cellxgene.datasets <- ShowCELLxGENEDatasets()
## ----cellxgene_summary, eval=FALSE--------------------------------------------
# StatDBAttribute(df = all.cellxgene.datasets, filter = c("organism", "sex"), database = "CELLxGENE")
## ----cellxgene_meta, eval=FALSE-----------------------------------------------
# # human 10x v2 and v3 datasets
# human.10x.cellxgene.meta <- ExtractCELLxGENEMeta(
# all.samples.df = all.cellxgene.datasets,
# assay = c("10x 3' v2", "10x 3' v3"), organism = "Homo sapiens"
# )
## ----cellxgene_parse, eval=FALSE----------------------------------------------
# out.folder <- tempdir()
# ParseCELLxGENE(
# meta = human.10x.cellxgene.meta[1:5, ], file.ext = "rds",
# out.folder = out.folder
# )
## ----test_data, eval=FALSE----------------------------------------------------
# # library
# library(Seurat) # pbmc_small
# library(scRNAseq) # seger
## ----test_seurat, eval=FALSE--------------------------------------------------
# # object
# pbmc_small
## ----testsce, eval=FALSE------------------------------------------------------
# seger <- scRNAseq::SegerstolpePancreasData()
## ----seu2sce, eval=FALSE------------------------------------------------------
# sce.obj <- ExportSeurat(seu.obj = pbmc_small, assay = "RNA", to = "SCE")
## ----seu2cds1, eval=FALSE-----------------------------------------------------
# # BiocManager::install("monocle") # reuqire monocle
# cds.obj <- ExportSeurat(seu.obj = pbmc_small, assay = "RNA", reduction = "tsne", to = "CellDataSet")
## ----seu2cds2, eval=FALSE-----------------------------------------------------
# # remotes::install_github('cole-trapnell-lab/monocle3') # reuqire monocle3
# cds3.obj <- ExportSeurat(seu.obj = pbmc_small, assay = "RNA", to = "cell_data_set")
## ----seu2anndata, eval=FALSE--------------------------------------------------
# # remove pbmc_small.h5ad first
# anndata.file <- tempfile(pattern = "pbmc_small_", fileext = ".h5ad")
# # you may need to set conda.path
# ExportSeurat(
# seu.obj = pbmc_small, assay = "RNA", to = "AnnData",
# anndata.file = anndata.file
# )
## ----seu2loom, eval=FALSE-----------------------------------------------------
# loom.file <- tempfile(pattern = "pbmc_small_", fileext = ".loom")
# ExportSeurat(
# seu.obj = pbmc_small, assay = "RNA", to = "loom",
# loom.file = loom.file
# )
## ----sce2seu, eval=FALSE------------------------------------------------------
# seu.obj.sce <- ImportSeurat(obj = sce.obj, from = "SCE", count.assay = "counts", data.assay = "logcounts", assay = "RNA")
## ----cds2seu1, eval=FALSE-----------------------------------------------------
# seu.obj.cds <- ImportSeurat(obj = cds.obj, from = "CellDataSet", count.assay = "counts", assay = "RNA")
## ----cds2seu2, eval=FALSE-----------------------------------------------------
# seu.obj.cds3 <- ImportSeurat(obj = cds3.obj, from = "cell_data_set", count.assay = "counts", data.assay = "logcounts", assay = "RNA")
## ----anndata2seu, eval=FALSE--------------------------------------------------
# # you may need to set conda.path
# seu.obj.h5ad <- ImportSeurat(
# anndata.file = anndata.file, from = "AnnData", assay = "RNA"
# )
## ----loom2seu, eval=FALSE-----------------------------------------------------
# # loom will lose reduction
# seu.obj.loom <- ImportSeurat(loom.file = loom.file, from = "loom")
## ----sce2anndata, eval=FALSE--------------------------------------------------
# # remove seger.h5ad first
# seger.anndata.file <- tempfile(pattern = "seger_", fileext = ".h5ad")
# SCEAnnData(
# from = "SingleCellExperiment", to = "AnnData", sce = seger, X_name = "counts",
# anndata.file = seger.anndata.file
# )
## ----anndata2sce, eval=FALSE--------------------------------------------------
# seger.anndata <- SCEAnnData(
# from = "AnnData", to = "SingleCellExperiment",
# anndata.file = seger.anndata.file
# )
## ----sce2loom, eval=FALSE-----------------------------------------------------
# # remove seger.loom first
# seger.loom.file <- tempfile(pattern = "seger_", fileext = ".loom")
# SCELoom(
# from = "SingleCellExperiment", to = "loom", sce = seger,
# loom.file = seger.loom.file
# )
## ----loom2sce, eval=FALSE-----------------------------------------------------
# seger.loom <- SCELoom(
# from = "loom", to = "SingleCellExperiment",
# loom.file = seger.loom.file
# )
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.