Nothing
#' Calculating scores for Student's \eqn{t}-distribution
#'
#' These functions calculate scores (CRPS, logarithmic score) and their gradient and Hessian with respect
#' to the parameters of a location-scale transformed Student's
#' \eqn{t}-distribution. Furthermore, the censoring transformation and
#' the truncation transformation may be introduced on top of the
#' location-scale transformed \eqn{t}-distribution.
#'
#' @usage
#' ## score functions
#' crps_t(y, df, location = 0, scale = 1)
#' crps_ct(y, df, location = 0, scale = 1, lower = -Inf, upper = Inf)
#' crps_tt(y, df, location = 0, scale = 1, lower = -Inf, upper = Inf)
#' crps_gtct(y, df, location = 0, scale = 1, lower = -Inf, upper = Inf, lmass = 0, umass = 0)
#' logs_t(y, df, location = 0, scale = 1)
#' logs_tt(y, df, location = 0, scale = 1, lower = -Inf, upper = Inf)
#' dss_t(y, df, location = 0, scale = 1)
#'
#' ## gradient (location, scale) functions
#' gradcrps_t(y, df, location = 0, scale = 1)
#' gradcrps_ct(y, df, location = 0, scale = 1, lower = -Inf, upper = Inf)
#' gradcrps_tt(y, df, location = 0, scale = 1, lower = -Inf, upper = Inf)
#'
#' ## Hessian (location, scale) functions
#' hesscrps_t(y, df, location = 0, scale = 1)
#' hesscrps_ct(y, df, location = 0, scale = 1, lower = -Inf, upper = Inf)
#' hesscrps_tt(y, df, location = 0, scale = 1, lower = -Inf, upper = Inf)
#'
#' @param y vector of observations.
#' @param df vector of degrees of freedom.
#' @param location vector of location parameters.
#' @param scale vector of scale paramters.
#' @param lower,upper lower and upper truncation/censoring bounds.
#' @param lmass,umass vectors of point masses in \code{lower} and \code{upper}
#' respectively.
#' @return For the CRPS functions: a vector of score values.
#'
#' For the gradient and Hessian functions: a matrix with column names
#' corresponding to the respective partial derivatives.
#' @name scores_t
NULL
### crps ###
# standard
#' @rdname scores_t
#' @usage NULL
#' @export
crps_t <- function(y, df, location = 0, scale = 1) {
if (!identical(location, 0)) y <- y - location
if (identical(scale, 1)) {
df[df <= 1] <- NaN
bfrac <- beta(0.5, df - 0.5) / beta(0.5, 0.5 * df)^2
y * (2 * pt(y, df) - 1) + 2 / (df - 1) *
(dt(y, df) * (df + y^2) - sqrt(df) * bfrac)
} else {
scale[scale < 0] <- NaN
if (all(scale > 0, na.rm = TRUE)) {
scale * crps_t(y / scale, df)
} else {
out <- scale * crps_t(y / scale, df)
ind1 <- df == Inf
ind2 <- scale == 0
out[ind1] <- rep_len(scale * crps_norm(y / scale), length(out))[ind1]
out[ind2] <- rep_len(abs(y), length(out))[ind2]
out
}
}
}
# censored
#' @rdname scores_t
#' @usage NULL
#' @export
crps_ct <- function(y, df, location = 0, scale = 1,
lower = -Inf, upper = Inf) {
if (!identical(location, 0)) {
y <- y - location
if (!identical(lower, -Inf)) lower <- lower - location
if (!identical(upper, Inf)) upper <- upper - location
}
if (identical(scale, 1)) {
df[df <= 1] <- NaN
out_l1 <- out_l2 <- out_u1 <- 0
out_u2 <- 1
z <- y
if (!identical(lower, -Inf)) {
p_l <- pt(lower, df)
G_l <- -(df + lower^2) / (df - 1) * dt(lower, df)
pb_l <- pbeta(df / (df + lower^2), df - 0.5, 0.5)
out_l1 <- -lower * p_l^2 + 2 * G_l * p_l
out_l1[lower == -Inf] <- 0
out_l2 <- 0.5 * ifelse(p_l <= 0.5, pb_l, 2 - pb_l)
z <- pmax(lower, z)
}
if (!identical(upper, Inf)) {
p_u <- pt(upper, df, lower.tail = FALSE)
G_u <- -(df + upper^2) / (df - 1) * dt(upper, df)
pb_u <- pbeta(df / (df + upper^2), df - 0.5, 0.5)
out_u1 <- upper * p_u^2 + 2 * G_u * p_u
out_u1[upper == Inf] <- 0
out_u2 <- 0.5 * ifelse(p_u >= 0.5, pb_u, 2 - pb_u)
z <- pmin(upper, z)
}
b <- out_u2 - out_l2
bfrac <- 2 * sqrt(df) / (df - 1) *
beta(0.5, df - 0.5) / beta(0.5, 0.5 * df)^2
G_z <- -(df + z^2) / (df - 1) * dt(z, df)
out_z <- z * (2 * pt(z, df) - 1) - 2 * G_z
out <- out_z + out_l1 + out_u1 - b * bfrac
out[lower > upper] <- NaN
out[lower == upper] <- 0
out + abs(y - z)
} else {
scale[scale < 0] <- NaN
if (!identical(lower, -Inf)) lower <- lower / scale
if (!identical(upper, Inf)) upper <- upper / scale
if (all(scale > 0, na.rm = TRUE)) {
scale * crps_ct(y / scale, df, lower = lower, upper = upper)
} else {
out <- scale * crps_ct(y / scale, df, lower = lower, upper = upper)
ind1 <- df == Inf
ind2 <- scale == 0 & lower <= upper
out[ind1] <-
rep_len(scale * crps_cnorm(y / scale, lower = lower, upper = upper),
length(out))[ind1]
out[ind2] <-
rep_len(abs(y - pmax(lower, 0) - pmin(upper, 0)), length(out))[ind2]
out
}
}
}
# truncated
#' @rdname scores_t
#' @usage NULL
#' @export
crps_tt <- function(y, df, location = 0, scale = 1,
lower = -Inf, upper = Inf) {
if (!identical(location, 0)) {
y <- y - location
if (!identical(lower, -Inf)) lower <- lower - location
if (!identical(upper, Inf)) upper <- upper - location
}
if (identical(scale, 1)) {
df[df <= 1] <- NaN
ind_swap <- lower > 3
if (any(ind_swap, na.rm = TRUE)) {
sign <- 1 - 2 * ind_swap
y <- y * sign
lower <- lower * sign
upper <- upper * sign
l_tmp <- lower[ind_swap]
u_tmp <- upper[ind_swap]
lower[ind_swap] <- u_tmp
upper[ind_swap] <- l_tmp
}
out_l <- p_l <- 0
out_u <- p_u <- 1
z <- y
if (!identical(lower, -Inf)) {
p_l <- pt(lower, df)
pb_l <- pbeta(df / (df + lower^2), df - 0.5, 0.5)
out_l <- 0.5 * ifelse(p_l <= 0.5, pb_l, 2 - pb_l)
z <- pmax(lower, z)
}
if (!identical(upper, Inf)) {
p_u <- pt(upper, df)
pb_u <- pbeta(df / (df + upper^2), df - 0.5, 0.5)
out_u <- 0.5 * ifelse(p_u <= 0.5, pb_u, 2 - pb_u)
z <- pmin(upper, z)
}
a <- p_u - p_l
b <- out_u - out_l
b[b == 0] <- NaN
bfrac <- 2 * sqrt(df) / (df - 1) *
beta(0.5, df - 0.5) / beta(0.5, 0.5 * df)^2
G_z <- -(df + z^2) / (df - 1) * dt(z, df)
out_z <- z * (2 * pt(z, df) - p_l - p_u) - 2 * G_z
out <- (out_z - b / a * bfrac) / a
out[lower > upper] <- NaN
out[lower == upper] <- 0
out + abs(y - z)
} else {
scale[scale < 0] <- NaN
if (!identical(lower, -Inf)) lower <- lower / scale
if (!identical(upper, Inf)) upper <- upper / scale
if (all(scale > 0, na.rm = TRUE)) {
scale * crps_tt(y / scale, df, lower = lower, upper = upper)
} else {
out <- scale * crps_tt(y / scale, df, lower = lower, upper = upper)
ind1 <- df == Inf
ind2 <- scale == 0 & lower < 0 & upper > 0
out[ind1] <-
rep_len(scale * crps_tnorm(y / scale, lower = lower, upper = upper),
length(out))[ind1]
out[ind2] <- rep_len(abs(y), length(out))[ind2]
out
}
}
}
# generalized truncated/censored
#' @rdname scores_t
#' @usage NULL
#' @export
crps_gtct <- function(y, df, location = 0, scale = 1,
lower = -Inf, upper = Inf,
lmass = 0, umass = 0) {
if (!identical(location, 0)) {
y <- y - location
if (!identical(lower, -Inf)) lower <- lower - location
if (!identical(upper, Inf)) upper <- upper - location
}
if (identical(scale, 1)) {
df[df <= 1] <- NaN
ind_swap <- lower > 3
if (any(ind_swap, na.rm = TRUE)) {
sign <- 1 - 2 * ind_swap
y <- y * sign
lower <- lower * sign
upper <- upper * sign
l_tmp <- lower[ind_swap]
u_tmp <- upper[ind_swap]
lower[ind_swap] <- u_tmp
upper[ind_swap] <- l_tmp
if (length(lmass) < length(lower))
lmass <- rep_len(lmass, length(lower))
if (length(umass) < length(upper))
umass <- rep_len(umass, length(upper))
l_tmp <- lmass[ind_swap]
u_tmp <- umass[ind_swap]
lmass[ind_swap] <- u_tmp
umass[ind_swap] <- l_tmp
}
out_l1 <- out_l2 <- out_l3 <- out_u1 <- out_u2 <- p_l <- 0
out_u3 <- p_u <- 1
z <- y
if (!identical(lower, -Inf) || !identical(lmass, 0)) {
lmass[lmass < 0 & lmass > 1] <- NaN
p_l <- pt(lower, df)
G_l <- -(df + lower^2) / (df - 1) * dt(lower, df)
G_l[lower == -Inf] <- 0
pb_l <- pbeta(df / (df + lower^2), df - 0.5, 0.5)
out_l1 <- lower * lmass^2
out_l1[lmass == 0] <- 0
out_l2 <- 2 * G_l * lmass
out_l3 <- 0.5 * ifelse(p_l <= 0.5, pb_l, 2 - pb_l)
z <- pmax(lower, z)
}
if (!identical(upper, Inf) || !identical(umass, 0)) {
umass[umass < 0 & umass > 1] <- NaN
p_u <- pt(upper, df)
G_u <- -(df + upper^2) / (df - 1) * dt(upper, df)
G_u[upper == Inf] <- 0
pb_u <- pbeta(df / (df + upper^2), df - 0.5, 0.5)
out_u1 <- upper * umass^2
out_u1[umass == 0] <- 0
out_u2 <- 2 * G_u * umass
out_u3 <- 0.5 * ifelse(p_u <= 0.5, pb_u, 2 - pb_u)
z <- pmin(upper, z)
}
a1 <- p_u - p_l
a2 <- 1 - (umass + lmass)
a2[a2 < 0 | a2 > 1] <- NaN
b <- out_u3 - out_l3
b[b == 0] <- NaN
bfrac <- 2 * sqrt(df) / (df - 1) *
beta(0.5, df - 0.5) / beta(0.5, 0.5 * df)^2
G_z <- -(df + z^2) / (df - 1) * dt(z, df)
out <- out_u1 - out_l1 +
(z * (2 * a2 * pt(z, df) -
(1 - 2 * lmass) * p_u -
(1 - 2 * umass) * p_l) -
(2 * G_z - out_u2 - out_l2 +
a2 * b / a1 * bfrac
) * a2
) / a1
out[lower > upper] <- NaN
out[lower == upper] <- 0
out + abs(y - z)
} else {
scale[scale < 0] <- NaN
if (!identical(lower,-Inf)) lower <- lower / scale
if (!identical(upper, Inf)) upper <- upper / scale
if (all(scale > 0, na.rm = TRUE)) {
scale * crps_gtct(y / scale, df,
lower = lower, upper = upper,
lmass = lmass, umass = umass)
} else {
out <- scale * crps_gtct(y / scale, df,
lower = lower, upper = upper,
lmass = lmass, umass = umass)
ind1 <- df == Inf
ind2 <- scale == 0 & lower < 0 & upper > 0
out[ind1] <-
rep_len(scale * crps_gtcnorm(y / scale,
lower = lower, upper = upper,
lmass = lmass, umass = umass),
length(out))[ind1]
out[ind2] <-
rep_len(
(pmin(y, 0) - lower) * lmass ^ 2 - pmin(y, 0) * (1 - lmass) ^ 2 +
(upper - pmax(y, 0)) * umass ^ 2 + pmax(y, 0) * (1 - umass) ^ 2,
length(out)
)[ind2]
out
}
}
}
#' @rdname scores_t
#' @usage NULL
#' @export
logs_t <- function(y, df, location = 0, scale = 1) {
-ft(y, df, location, scale, log = TRUE)
}
#' @rdname scores_t
#' @usage NULL
#' @export
logs_tt <- function(y, df, location = 0, scale = 1,
lower = -Inf, upper = Inf) {
-ft(y, df, location, scale, lower, upper, log = TRUE)
}
#' @rdname scores_t
#' @usage NULL
#' @export
dss_t <- function(y, df, location = 0, scale = 1) {
if (!identical(location, 0)) y <- y - location
df[df <= 2] <- NaN
scale[scale <= 0] <- NaN
v <- scale^2 * ifelse(is.infinite(df), 1, df / (df - 2))
y^2 / v + log(v)
}
### gradient (location, scale) ###
# standard
#' @rdname scores_t
#' @usage NULL
#' @export
gradcrps_t <- function(y , df, location = 0, scale = 1) {
all_df_in_1_to_Inf <- all(is.finite(df) & df > 1)
if (all_df_in_1_to_Inf &&
identical(location, 0) &&
identical(scale, 1)) {
term0 <- crps_t(y, df)
term1 <- 1 - 2 * pt(y, df)
cbind(dloc = term1, dscale = term0 + y * term1)
} else if (all_df_in_1_to_Inf &&
all(is.finite(scale) & scale > 0)) {
gradcrps_t((y - location) / scale, df)
} else {
input <- data.frame(z = y - location,
df = df,
scale = scale)
out <- rep(NaN, dim(input)[1L])
isNaN <- with(input, is.na(df) | df <= 1 |
is.na(scale) | scale <= 0)
ind2 <- !isNaN & input$df == Inf
ind3 <- !isNaN & !ind2
if (any(ind2)) {
out[ind2] <- with(input[ind2, ], gradcrps_norm(z / scale))
}
if (any(ind3)) {
out[ind3] <- with(input[ind3, ], gradcrps_t(z / scale, df))
}
out
}
}
# censored
#' @rdname scores_t
#' @usage NULL
#' @export
gradcrps_ct <- function(y, df, location = 0, scale = 1,
lower = -Inf, upper = Inf) {
nan_in_bounds <- anyNA(lower) || anyNA(upper)
all_df_in_1_to_Inf <- all(is.finite(df) & df > 1)
if (!nan_in_bounds &&
all_df_in_1_to_Inf &&
identical(location, 0) &&
identical(scale, 1)) {
z <- y
if (!identical(lower, -Inf)) z <- pmax(lower, z)
if (!identical(upper, Inf)) z <- pmin(upper, z)
term0 <- crps_ct(z, df, lower = lower, upper = upper)
term1 <- 2 * pt(z, df) - 1
term2 <- pt(lower, df)^2
term3 <- pt(upper, df, lower.tail = FALSE)^2
dloc <- -term1 + term2 - term3
dscale <- term0 - term1 * z +
term2 * ifelse(lower == -Inf, 0, lower) -
term3 * ifelse(upper == Inf, 0, upper)
out <- cbind(dloc, dscale)
out[lower > upper, ] <- NaN
out[lower == upper, ] <- 0
out
} else if (!nan_in_bounds &&
all_df_in_1_to_Inf &&
all(is.finite(scale) & scale > 0)) {
if (!identical(lower, -Inf)) lower <- (lower - location) / scale
if (!identical(upper, Inf)) upper <- (upper - location) / scale
gradcrps_ct((y - location) / scale, df,
lower = lower, upper = upper)
} else {
input <- data.frame(z = y - location, scale = scale,
lower = lower - location,
upper = upper - location)
out <- matrix(NaN, dim(input)[1L], 2,
dimnames = list(NULL, c("dloc", "dscale")))
isNaN <- with(input, {
is.na(df) | df <= 1 |
is.na(scale) | scale <= 0 |
is.na(lower) | is.na(upper)
})
ind2 <- !isNaN & is.infinite(df)
ind3 <- !isNaN & !ind2
if (any(ind2)) {
out[ind2, ] <- with(input[ind2, ], {
gradcrps_cnorm(z / scale,
lower = lower / scale,
upper = upper / scale)
})
}
if (any(ind3)) {
out[ind3, ] <- with(input[ind3, ], {
gradcrps_ct(z / scale, df,
lower = lower / scale,
upper = upper / scale)
})
}
out
}
}
# truncated
#' @rdname scores_t
#' @usage NULL
#' @export
gradcrps_tt <- function(y, df, location = 0, scale = 1,
lower = -Inf, upper = Inf) {
nan_in_bounds <- anyNA(lower) || anyNA(upper)
all_df_in_1_to_Inf <- all(is.finite(df) & df > 1)
if (!nan_in_bounds &&
all_df_in_1_to_Inf &&
identical(location, 0) &&
identical(scale, 1)) {
sign <- 1
ind_swap <- lower > 3
if (any(ind_swap)) {
sign <- 1 - 2 * ind_swap
y <- y * sign
lower <- lower * sign
upper <- upper * sign
l_tmp <- lower[ind_swap]
u_tmp <- upper[ind_swap]
lower[ind_swap] <- u_tmp
upper[ind_swap] <- l_tmp
}
p_l <- d_l <- d_u <- G_l <- G_u <- 0
p_u <- 1
z <- y
if (!identical(lower, -Inf)) {
p_l <- pt(lower, df)
d_l <- dt(lower, df)
G_l <- (df + lower^2) / (df - 1) * d_l
G_l[is.infinite(lower)] <- 0
z <- pmax(lower, z)
}
if (!identical(upper, Inf)) {
p_u <- pt(upper, df)
d_u <- dt(upper, df)
G_u <- (df + upper^2) / (df - 1) * d_u
G_u[is.infinite(upper)] <- 0
z <- pmin(upper, z)
}
a <- p_u - p_l
p_z <- pt(z, df)
d_z <- dt(z, df)
G_z <- (df + z^2) / (df - 1) * d_z
term0 <- crps_tt(z, df, lower = lower, upper = upper)
term1 <- (p_l + p_u - 2 * p_z) / a
term2 <- 2 * d_l / a *
((z * p_l - z * p_z - G_l + G_z) / a + term0)
term3 <- 2 * d_u / a *
((z * p_u - z * p_z - G_u + G_z) / a + term0)
dloc <- (term1 - term2 + term3) * sign
dscale <- term0 + term1 * z -
term2 * ifelse(lower == -Inf, 0, lower) +
term3 * ifelse(upper == Inf, 0, upper)
out <- cbind(dloc, dscale)
out[lower > upper, ] <- NaN
out[lower == upper, ] <- 0
out
} else if (!nan_in_bounds &&
all_df_in_1_to_Inf &&
all(is.finite(scale) & scale > 0)) {
if (!identical(lower, -Inf)) lower <- (lower - location) / scale
if (!identical(upper, Inf)) upper <- (upper - location) / scale
gradcrps_tt((y - location) / scale, df,
lower = lower, upper = upper)
} else {
input <- data.frame(z = y - location, df = df, scale = scale,
lower = lower - location,
upper = upper - location)
out <- matrix(NaN, dim(input)[1L], 2,
dimnames = list(NULL, c("dloc", "dscale")))
isNaN <- with(input, {
is.na(df) | df <= 1 |
is.na(scale) | scale <= 0 |
is.na(lower) | is.na(upper)
})
ind2 <- !isNaN & is.infinite(df)
ind3 <- !isNaN & !ind2
if (any(ind2)) {
out[ind2, ] <- with(input[ind2, ], {
gradcrps_tnorm(z / scale,
lower = lower / scale,
upper = upper / scale)
})
}
if (any(ind3)) {
out[ind3, ] <- with(input[ind3, ], {
gradcrps_tt(z / scale, df,
lower = lower / scale,
upper = upper / scale)
})
}
out
}
}
### Hessian (location, scale) ###
# standard
#' @rdname scores_t
#' @usage NULL
#' @export
hesscrps_t <- function(y , df, location = 0, scale = 1) {
all_df_in_1_to_Inf <- all(is.finite(df) & df > 1)
if (all_df_in_1_to_Inf &&
identical(location, 0) &&
identical(scale, 1)) {
term1 <- dt(y, df)
d2loc <- term1
dloc.dscale <- dscale.dloc <- term1 * y
d2scale <- term1 * y^2
2 * cbind(d2loc, d2scale, dloc.dscale, dscale.dloc)
} else if (all_df_in_1_to_Inf &&
all(is.finite(scale) & scale > 0)) {
hesscrps_t((y - location) / scale, df) / scale
} else {
input <- data.frame(z = y - location,
df = df,
scale = scale)
out <- rep(NaN, dim(input)[1L], 4,
dimnames = list(NULL, c("d2loc", "d2scale",
"dloc.dscale", "dscale.dloc")))
isNaN <- with(input, is.na(df) | df <= 1 |
is.na(scale) | scale <= 0)
ind2 <- !isNaN & input$df == Inf
ind3 <- !isNaN & !ind2
if (any(ind2)) {
out[ind2] <- with(input[ind2, ], hesscrps_norm(z / scale) / scale)
}
if (any(ind3)) {
out[ind3] <- with(input[ind3, ], gesscrps_t(z / scale, df) / scale)
}
out
}
}
# censored
#' @rdname scores_t
#' @usage NULL
#' @export
hesscrps_ct <- function(y, df, location = 0, scale = 1,
lower = -Inf, upper = Inf) {
nan_in_bounds <- anyNA(lower) || anyNA(upper)
all_df_in_1_to_Inf <- all(is.finite(df) & df > 1)
if (!nan_in_bounds &&
all_df_in_1_to_Inf &&
identical(location, 0) &&
identical(scale, 1)) {
z <- y
if (!identical(lower, -Inf)) z <- pmax(lower, z)
if (!identical(upper, Inf)) z <- pmin(upper, z)
term1 <- dt(z, df)
term2 <- dt(lower, df) * pt(lower, df)
term3 <- dt(upper, df) * pt(upper, df, lower.tail = FALSE)
d2mu <- term1 - term2 - term3
dmu.dsigma <- dsigma.dmu <- term1 * z -
term2 * ifelse(is.finite(lower), lower, 0) -
term3 * ifelse(is.finite(upper), upper, 0)
d2sigma <- term1 * z^2 -
term2 * ifelse(is.finite(lower), lower^2, 0) -
term3 * ifelse(is.finite(upper), upper^2, 0)
out <- 2 * cbind(d2mu, d2sigma, dmu.dsigma, dsigma.dmu)
out[lower > upper, ] <- NaN
out[lower == upper, ] <- 0
out
} else if (!nan_in_bounds &&
all_df_in_1_to_Inf &&
all(is.finite(scale) & scale > 0)) {
if (!identical(lower, -Inf)) lower <- (lower - location) / scale
if (!identical(upper, Inf)) upper <- (upper - location) / scale
hesscrps_ct((y - location) / scale, df,
lower = lower, upper = upper)
} else {
input <- data.frame(z = y - location, scale = scale,
lower = lower - location,
upper = upper - location)
out <- rep(NaN, dim(input)[1L], 4,
dimnames = list(NULL, c("d2loc", "d2scale",
"dloc.dscale", "dscale.dloc")))
isNaN <- is.na(input$z) |
is.na(input$df) | input$df <= 1 |
is.na(input$scale) | input$scale <= 0
ind2 <- input$df == Inf & !isNaN
ind3 <- !isNaN & !ind2
if (any(ind2)) {
out[ind2] <- with(input[ind2, ],
scale * hesscrps_cnorm(z / scale,
lower = lower / scale,
upper = upper / scale))
}
if (any(ind3)) {
out[ind3] <- with(input[ind3, ],
scale * hesscrps_ct(z / scale, df,
lower = lower / scale,
upper = upper / scale))
}
out
}
}
# truncated
#' @rdname scores_t
#' @usage NULL
#' @export
hesscrps_tt <- function(y, df, location = 0, scale = 1,
lower = -Inf, upper = Inf) {
nan_in_bounds <- anyNA(lower) || anyNA(upper)
all_df_in_1_to_Inf <- all(is.finite(df) & df > 1)
if (!nan_in_bounds &&
all_df_in_1_to_Inf &&
identical(location, 0) &&
identical(scale, 1)) {
z <- y
if (!identical(lower, -Inf)) z <- pmax(lower, z)
if (!identical(upper, Inf)) z <- pmin(upper, z)
z_lb_ub <- cbind(z, lb = lower, ub = upper)
CDF <- pt(z_lb_ub, df)
denom <- CDF[, "ub"] - CDF[, "lb"]
CDF <- CDF / denom
PDF <- dt(z_lb_ub, df) / denom
PDFp_over_PDF <- -(df + 1) * z_lb_ub / (df + z_lb_ub^2)
PDFp_over_PDF[is.infinite(z_lb_ub)] <- 0
G <- -(df + z_lb_ub^2) / (df - 1) * PDF
G[is.infinite(z_lb_ub)] <- 0
CRPS <- crps_tt(z, df, lower = lower, upper = upper)
out <- calcHess_trunc(z, 1, lower, upper,
CDF, PDF, PDFp_over_PDF, G, CRPS)
out[lower > upper, ] <- NaN
out[lower == upper, ] <- 0
out
} else if (!nan_in_bounds &&
all_df_in_1_to_Inf &&
all(is.finite(scale) & scale > 0)) {
if (!identical(lower, -Inf)) lower <- (lower - location) / scale
if (!identical(upper, Inf)) upper <- (upper - location) / scale
hesscrps_tt((y - location) / scale, df,
lower = lower, upper = upper)
} else {
input <- data.frame(z = y - location, scale = scale,
lower = lower - location,
upper = upper - location)
out <- rep(NaN, dim(input)[1L], 4,
dimnames = list(NULL, c("d2loc", "d2scale",
"dloc.dscale", "dscale.dloc")))
isNaN <- is.na(input$z) |
is.na(input$df) | input$df <= 1 |
is.na(input$scale) | input$scale <= 0
ind2 <- input$df == Inf & !isNaN
ind3 <- !isNaN & !ind2
if (any(ind2)) {
out[ind2] <- with(input[ind2, ],
scale * hesscrps_tnorm(z / scale,
lower = lower / scale,
upper = upper / scale))
}
if (any(ind3)) {
out[ind3] <- with(input[ind3, ],
scale * hesscrps_tt(z / scale, df,
lower = lower / scale,
upper = upper / scale))
}
out
}
}
################################## Checks ######################################
check_crps_t <- function(input) {
required <- c("y", "df", "location", "scale")
checkNames1(required, names(input))
checkNumeric(input, infinite_exception = "df")
checkVector(input)
if (any(input$scale <= 0))
stop("Parameter 'scale' contains non-positive values.")
if (any(input$df <= 1)) {
stop(paste("Parameter 'df' contains values less than or equal to 1.",
"The CRPS does not exist."))
}
}
check_crps_ct <- function(input) {
required <- c("y", "location", "scale", "lower", "upper")
checkNames1(required, names(input))
checkNumeric(input, infinite_exception = c("lower", "upper"))
checkVector(input)
if (any(input$scale <= 0))
stop("Parameter 'scale' contains non-positive values.")
if (any(input$df <= 1)) {
stop(paste("Parameter 'df' contains values less than or equal to 1.",
"The CRPS does not exist."))
}
if (any(input$lower > input$upper))
stop("Parameter 'lower' contains values greater than corresponding values in 'upper'.")
}
check_crps_tt <- check_crps_ct
check_crps_gtclogis <- function(input) {
required <- c("y", "location", "scale", "lower", "upper", "lmass", "umass")
checkNames1(required, names(input))
checkNumeric(input, infinite_exception = c("lower", "upper"))
checkVector(input)
if (any(input$scale <= 0))
stop("Parameter 'scale' contains non-positive values.")
if (any(input$df <= 1)) {
stop(paste("Parameter 'df' contains values less than or equal to 1.",
"The CRPS does not exist."))
}
if (any(input$lower > input$upper))
stop("Parameter 'lower' contains values greater than corresponding values in 'upper'.")
if (any(input$lmass < 0 | input$lmass > 1))
stop("Parameter 'lmass' contains values not in [0, 1].")
if (any(input$umass < 0 | input$umass > 1))
stop("Parameter 'umass' contains values not in [0, 1].")
if (any(input$umass + input$lmass > 1))
stop("Values in 'lmass' and 'umass' add up to more than 1.")
}
check_logs_t <- function(input) {
required <- c("y", "df", "location", "scale")
checkNames1(required, names(input))
checkNumeric(input, infinite_exception = "df")
checkVector(input)
if (any(input$scale <= 0))
stop("Parameter 'scale' contains non-positive values.")
if (any(input$df <= 0))
stop("Parameter 'df' contains non-positive values.")
}
check_logs_tt <- function(input) {
required <- c("y", "location", "scale", "lower", "upper")
checkNames1(required, names(input))
checkNumeric(input, infinite_exception = c("lower", "upper"))
checkVector(input)
if (any(input$scale <= 0))
stop("Parameter 'scale' contains non-positive values.")
if (any(input$df <= 0))
stop("Parameter 'df' contains non-positive values.")
if (any(input$lower > input$upper))
stop("Parameter 'lower' contains values greater than corresponding values in 'upper'.")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.