R/check.R

Defines functions par_message par_df sanity

Documented in sanity

#' Sanity check of an sdmTMB model
#'
#' @param object Fitted model from [sdmTMB()].
#' @param big_sd_log10 Value to check size of standard errors against. A value
#'   of 2 would indicate that standard errors greater than `10^2` (i.e., 100)
#'   should be flagged.
#' @param gradient_thresh Gradient threshold to issue warning.
#' @param silent Logical: suppress messages? Useful to set to `TRUE` if running
#'   large numbers of models and just interested in returning sanity list
#'   objects.
#'
#' @return An invisible named list of checks.
#' @export
#'
#' @details
#' If `object` is `NA`, `NULL`, or of class `"try-error"`, `sanity()` will
#' return `FALSE`. This is to facilitate using `sanity()` on models with [try()]
#' or [tryCatch()]. See the examples section.
#'
#' @examples
#' fit <- sdmTMB(
#'   present ~ s(depth),
#'   data = pcod_2011, mesh = pcod_mesh_2011,
#'   family = binomial()
#' )
#' sanity(fit)
#'
#' s <- sanity(fit)
#' s
#'
#' # If fitting many models in a loop, you may want to wrap
#' # sdmTMB() in try() to handle errors. sanity() will take an object
#' # of class "try-error" and return FALSE.
#' # Here, we will use stop() to simulate a failed sdmTMB() fit:
#' failed_fit <- try(stop())
#' s2 <- sanity(failed_fit)
#' all(unlist(s))
#' all(unlist(s2))
sanity <- function(object, big_sd_log10 = 2, gradient_thresh = 0.001, silent = FALSE) {

  # make it easy to use output from try()
  if (length(object) <= 1L) {
    if (is.na(object) || is.null(object)) {
      return(FALSE)
    }
  }
  if (inherits(object, "try-error")) {
    return(FALSE)
  }
  assert_that(inherits(object, "sdmTMB"))
  if ( isFALSE(object$call$do_fit)) {
    cli_abort("`do_fit = FALSE` so this model hasn't been fit yet")
  }

  hessian_ok <- eigen_values_ok <- gradients_ok <- se_magnitude_ok <- FALSE
  nlminb_ok <- FALSE

  simplify_msg <- "Try simplifying the model, adjusting the mesh, or adding priors"

  if (identical(object$model$convergence, 0L)) {
    msg <- "Non-linear minimizer suggests successful convergence"
    if (!silent) cli::cli_alert_success(msg)
    nlminb_ok <- TRUE
  } else {
    msg <- "Non-linear minimizer did not converge: do not trust this model!"
    if (!silent) cli::cli_alert_danger(msg)
    if (!silent) cli::cli_alert_info(simplify_msg)
    cat("\n")
  }

  if (isFALSE(object$pos_def_hessian)) {
    msg <- "Non-positive-definite Hessian matrix: model may not have converged"
    if (!silent) cli::cli_alert_danger(msg)
    if (!silent) cli::cli_alert_info(simplify_msg)
    cat("\n")
  } else {
    msg <- "Hessian matrix is positive definite"
    if (!silent) cli::cli_alert_success(msg)
    hessian_ok <- TRUE
  }

  if (isTRUE(object$bad_eig)) {
    msg <- "Extreme or very small eigenvalues detected: model may not have converged"
    if (!silent) cli::cli_alert_danger(msg)
    if (!silent) cli::cli_alert_info(simplify_msg)
    cat("\n")
  } else {
    msg <- "No extreme or very small eigenvalues detected"
    if (!silent) cli::cli_alert_success(msg)
    eigen_values_ok <- TRUE
  }

  g <- object$gradients
  np <- names(object$model$par)
  for (i in seq_along(g)) {
    if (abs(g[i]) > gradient_thresh) {
      if (!silent) {
        cli::cli_alert_danger(c(
          "`", np[i],
          paste0("` gradient > ", gradient_thresh)
        ))
      }
      msg <- "See ?run_extra_optimization(), standardize covariates, and/or simplify the model"
      if (!silent) {
        cli::cli_alert_info(msg)
        cat("\n")
      }
    }
  }

  if (all(abs(g) <= gradient_thresh)) {
    msg <- "No gradients with respect to fixed effects are >= "
    if (!silent) cli::cli_alert_success(paste0(msg, gradient_thresh))
    gradients_ok <- TRUE
  }

  obj <- object$tmb_obj
  random <- unique(names(obj$env$par[obj$env$random]))

  pl <- as.list(object$sd_report, "Estimate")
  ple <- as.list(object$sd_report, "Std. Error")
  pars <- names(object$model$par)
  pl <- pl[pars]
  ple <- ple[pars]
  np <- names(ple)
  if (is_delta(object)) {
    ple$ln_phi[1] <- 0 # don't flag NA, not estimated
  }
  se_na_ok <- TRUE
  for (i in seq_along(ple)) {
    if (any(is.na(ple[i]))) {
      if (!silent) cli::cli_alert_danger(c("`", np[i], paste0("` standard error is NA")))
      par_message(np[i])
      if (!silent) {
        cli::cli_alert_info(simplify_msg)
        cat("\n")
      }
      se_na_ok <- FALSE
    }
  }
  if (se_na_ok) {
    msg <- "No fixed-effect standard errors are NA"
    if (!silent) cli::cli_alert_success(msg)
  }

  est <- as.list(object$sd_report, "Estimate")
  se <- as.list(object$sd_report, "Std. Error")
  fixed <- !(names(est) %in% random)
  est <- est[fixed]
  se <- se[fixed]

  too_big <- function(se) {
    if (any(!is.na(se))) {
      se_max <- max(se, na.rm = TRUE)
      if (any(log10(abs(se_max)) > big_sd_log10)) {
        return(TRUE)
      } else {
        return(NULL)
      }
    } else {
      return(NULL)
    }
  }

  se_big <- lapply(se, too_big)

  for (i in seq_along(se_big)) {
    if (isTRUE(se_big[[i]])) {
      msg <- paste0("` standard error may be large")
      if (!silent) cli::cli_alert_danger(c("`", names(se_big)[i], msg))
      par_message(names(se_big)[i])
      if (!silent) {
        cli::cli_alert_info(simplify_msg)
        cat("\n")
      }
    }
  }

  if (all(unlist(lapply(se_big, is.null)))) {
    msg <- "No standard errors look unreasonably large"
    if (!silent) cli::cli_alert_success(msg)
    se_magnitude_ok <- TRUE
  }

  b <- tidy(object, conf.int = TRUE, silent = TRUE)
  br <- tidy(object, "ran_pars", conf.int = TRUE, silent = TRUE)
  b <- rbind(b, br)

  if (isTRUE(object$family$delta)) {
    b2 <- tidy(object, conf.int = TRUE, model = 2, silent = TRUE)
    br2 <- tidy(object, "ran_pars", conf.int = TRUE, model = 2, silent = TRUE)
    b2 <- rbind(b2, br2)
    b <- rbind(b, b2)
  }
  s <- grep("sigma", b$term)
  sigmas_ok <- TRUE
  if (length(s)) {
    for (i in s) {
      if (b$estimate[i] < 0.01) {
        msg <- "` is smaller than 0.01"
        if (!silent) cli::cli_alert_danger(c("`", b$term[i], msg))
        par_message(b$term[i])
        msg <- "Consider omitting this part of the model"
        if (!silent) {
          cli::cli_alert_info(msg)
          cat("\n")
        }
        sigmas_ok <- FALSE
      }
    }
  }
  if (sigmas_ok) {
    msg <- "No sigma parameters are < 0.01"
    if (!silent) cli::cli_alert_success(msg)
  }

  if (length(s)) {
    for (i in s) {
      if (b$estimate[i] > 100) {
        msg <- "` is larger than 100"
        if (!silent) cli::cli_alert_danger(c("`", b$term[i], msg))
        par_message(b$term[i])
        msg <- "Consider simplifying the model or adding priors"
        if (!silent) {
          cli::cli_alert_info(msg)
          cat("\n")
        }
        sigmas_ok <- FALSE
      }
    }
  }
  if (sigmas_ok) {
    msg <- "No sigma parameters are > 100"
    if (!silent) cli::cli_alert_success(msg)
  }

  r1 <- diff(range(object$data[[object$spde$xy_cols[1]]]))
  r2 <- diff(range(object$data[[object$spde$xy_cols[2]]]))
  r <- max(r1, r2)
  range_ok <- TRUE
  if ("range" %in% b$term) {
    if (max(b$estimate[b$term == "range"]) > r * 1.5) {
      msg <- "A `range` parameter looks fairly large (> 1.5 the greatest distance in data)"
      if (!silent) {
        cli::cli_alert_danger(msg)
        cli::cli_alert_info(simplify_msg)
        cli::cli_alert_info("Also make sure your spatial coordinates are not too big or small (e.g., work in UTM km instead of UTM m)", wrap = TRUE)
        cat("\n")
      }
      range_ok <- FALSE
    } else {
      nr <- length(grep("range", b$term))
      if (nr == 1L) msg <- "Range parameter doesn't look unreasonably large"
      if (nr > 1L) msg <- "Range parameters don't look unreasonably large"
      if (!silent) cli::cli_alert_success(msg)
    }
  }

  ret <- named_list(
    hessian_ok, eigen_values_ok, nlminb_ok, range_ok,
    gradients_ok, se_magnitude_ok, se_na_ok, sigmas_ok
  )
  all_ok <- all(unlist(ret))
  ret <- c(ret, all_ok = all_ok)
  invisible(ret)
}

par_df <- function() {
  data.frame(
    internal = c("ln_tau_O", "ln_tau_E", "ln_tau_G", "ln_tau_V", "ln_tau_Z", "ln_kappa"),
    external = c("sigma_O", "sigma_E", "sigma_G", "sigma_V", "sigma_Z", "range"),
    meaning = c(
      "spatial standard deviation",
      "spatiotemporal standard deviation",
      "random intercept standard deviation",
      "time-varying coefficient standard deviation",
      "spatially varying coefficient standard deviation",
      "distance at which data are effectively independent"
    ),
    stringsAsFactors = FALSE
  )
}

par_message <- function(par) {
  df <- par_df()
  if (par %in% df$internal) {
    par_clean <- df$external[df$internal == par]
    meaning <- df$meaning[df$internal == par]
    cli::cli_alert_info(paste0("`", par, "` is an internal parameter affecting `", par_clean, "`"))
    cli::cli_alert_info(paste0("`", par_clean, "` is the ", meaning))
  }

  if (par %in% "bs") {
    msg <- "`bs` is an internal parameter presenting the linear compoment of a smoother"
    cli::cli_alert_info(msg)
    msg <- "It's not uncommon for this parameter to have large standard errors,\nwhich can possibly be ignored if the rest of the model looks OK"
    cli::cli_alert_info(msg)
  }
}

Try the sdmTMB package in your browser

Any scripts or data that you put into this service are public.

sdmTMB documentation built on June 22, 2024, 10:48 a.m.