R/kw.R

Defines functions kw

Documented in kw

#' Kruskall Wallis test
#' 
#' Test for seasonality in a time series.
#' @param x time series
#' @param freq Frequency of the time series
#' @param diff Shall the differenced series be tested?
#' @param residuals Shall the residuals of an ARIMA model be tested?
#' @param autoarima Use automatic instead of a (0,1,1) ARIMA model?
#' @details If residuals=FALSE the autoarima settings are ignored.
#' @details If residuals=TRUE, a non-seasonal ARIMA model is estimated for the time series. And the residuals of the fitted model are used as input to the test statistic. If an automatic order selection is used, the Hyndman-Khandakar algorithm is employed with max(p)=max(q) <= 3.
#' @references Hyndman, R. J. and Y. Khandakar (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software 27 (3), 1-22.
#' @references Kruskal, W. H. and W. A.Wallis (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association 47 (260), 583-621.
#' @author Daniel Ollech
#' @examples kw(ts(rnorm(120, 10,10), frequency=12))
#' kw(ts(rnorm(1200, 10,10), frequency=7))
#' @export


kw <- function(x, freq=NA, diff=T, residuals=F, autoarima=T) {
  
  # Frequency of time series
  if(is.na(freq)) {
    if (any(class(x)=="ts")) {freq <- stats::frequency(x)} else {
      if (any(class(x)=="xts")) {freq <- freq_xts(x)} else {
        stop("Do not know the frequency of the time series.")
      }}}
  
  # Transformations
  if (diff & residuals) {warning("The differences of the residuals of a non-seasonal ARIMA model are computed and used. It may be better to either only take the differences or use the residuals.")}
  if (residuals) {
    if (autoarima) {
      maxorder <- ifelse(freq < 8, 1,3)
      driftallow= freq < 8
      model <- tryCatch(forecast::auto.arima(x, max.P=0, max.D=0, max.Q=0, max.p=3, max.q=3, seasonal=F, stepwise=F, max.order=maxorder, allowdrift=driftallow), error=function(e) e)
      if(inherits(model, "error")) {
        model <- tryCatch(stats::arima(x, order = c(0, 1, 1)), error=function(e) e) 
        if(inherits(model, "error")) {
          x <- x; warning("Could not estimate any ARIMA model, original series is used.")}} else {
            x <- stats::resid(model)}} else {
              model <- tryCatch(stats::arima(x, order=c(0,1,1))) 
              if(inherits(model, "error")) {x <- x; warning("Could not estimate any ARIMA model, original series is used.")} else {
                x <- stats::resid(model)}}}  else {model=NA}
  
  if (diff) {y <- diff(x)} else {y <- x}
  
  # Test statistic
  Rank <- rank(as.numeric(y), na.last="keep", ties.method="average")
  
  extra <- freq - length(Rank) %% freq 
  dat <- c(rep(NA, extra), Rank)
  
  yMAT <- matrix(dat, length(dat)/freq, freq, byrow=T)
  
  Nobs <- apply(yMAT, 2, function(x) length(x[stats::complete.cases(x)]))
  R2n <- apply(yMAT, 2, sum, na.rm=T)^2 / Nobs
  
  H <- 12 / (sum(Nobs)*(sum(Nobs)+1)) * sum(R2n) - 3 * (sum(Nobs)+1)
  
  if (sum(duplicated(Rank))>0) {
    groupSizeRanks <- table(Rank[duplicated(Rank)])+1
    sumT <- sum(groupSizeRanks^3 - groupSizeRanks)
    Correction <- 1 - sumT / (length(y)^3 - length(y))
    H <- H / Correction
  }
  Pval <- 1-stats::pchisq(H, freq-1)
  
  
  
  
  # Return
  out <- list(stat=H, Pval=Pval, test="Kruskall Wallis", model=model)
  class(out) <- "seastests"
  
  
  return(out)
}

Try the seastests package in your browser

Any scripts or data that you put into this service are public.

seastests documentation built on May 2, 2019, 2:37 a.m.