Nothing
segConstr.glm.fit <-function (y, XREG, Z, PSI, w, offs, opz, return.all.sol = FALSE)
{
useExp.k = TRUE
search.min <- function(h, psi, psi.old, X, y, w, offs) {#DUBBIO: Ma fam, eta0, L0 e maxit.glm devo passarli come argom,enti o li trova?
psi.ok<- psi*h + psi.old*(1-h)
PSI <- matrix(rep(psi.ok, rep(n, length(psi.ok))), ncol = length(psi.ok))
U1 <- (Z - PSI) * (Z > PSI)
#if (pow[1] != 1) U1 <- U1^pow[1]
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg[,i], U1[, id.psi.group==i])%*%invA.RList[[i]] #
#nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U1<-do.call(cbind, UList) #la matrice del disegno sara' cbind(X, U1)
obj1 <- try(suppressWarnings(glm.fit(x = cbind(X, U1), y = y, offset = offs,
weights = w, family = fam, control = glm.control(maxit = maxit.glm1[it]), etastart = eta0)),
silent = TRUE)
L1 <- if (class(obj1)[1] == "try-error") L0 + 10 else obj1$dev
L1
}
# est.k<-function(x1,y1,L0){
# ax<-log(x1)
# .x<-cbind(1,ax,ax^2)
# b<-drop(solve(crossprod(.x),crossprod(.x,y1)))
# const<-b[1]-L0
# DD<-sqrt(b[2]^2-4*const*b[3])
# kk<-exp((-b[2]+ DD) /(2*b[3]))
# return(round(kk))
#
# # ff<-function(xx) b[1]+b[2]*xx + b[3]*xx^2+ L0
# # a<-uniroot(ff, c(log(x[4]), 3.4))
# }
# dpmax <- function(x, y, pow = 1) {
# if (pow == 1)
# -(x > y)
# else -pow * ((x - y) * (x > y))^(pow - 1)
# }
in.psi <- function(LIM, PSI, ret.id = TRUE) {
a <- PSI[1, ] <= LIM[1, ]
b <- PSI[1, ] >= LIM[2, ]
is.ok <- !a & !b
if (ret.id)
return(is.ok)
isOK <- all(is.ok) && all(!is.na(is.ok))
isOK
}
far.psi <- function(Z, PSI, id.psi.group, ret.id = TRUE, fc = 0.93) {
nSeg <- length(unique(id.psi.group))
npsij <- tapply(id.psi.group, id.psi.group, length)
nj <- sapply(unique(id.psi.group), function(.x) {
tabulate(rowSums((Z > PSI)[, id.psi.group == .x,
drop = FALSE]) + 1)
}, simplify = FALSE)
ff <- id.far.ok <- vector("list", length = nSeg)
for (i in 1:nSeg) {
if (length(nj[[i]]) != npsij[i] + 1)
nj[[i]] <- tabulate(rowSums((Z >= PSI)[, id.psi.group ==
i, drop = FALSE]) + 1)
id.ok <- (nj[[i]] >= 2)
id.far.ok[[i]] <- id.ok[-length(id.ok)] & id.ok[-1]
ff[[i]] <- ifelse(diff(nj[[i]]) > 0, 1/fc, fc)
}
id.far.ok <- unlist(id.far.ok)
ff <- unlist(ff)
if (!ret.id) {
return(all(id.far.ok))
}
else {
attr(id.far.ok, "factor") <- ff
return(id.far.ok)
}
}
adj.psi <- function(psii, LIM) {
pmin(pmax(LIM[1, ], psii), LIM[2, ])
}
#nuovo per i vincoli
RList <- opz$RList
nomiUList<-UList<- vector("list",length(RList))
invAList <- lapply(RList, function(.x)rbind(c(1,rep(0,nrow(.x)-1)),diff(diag(nrow(.x)))))
invA.RList<-lapply(1:length(RList), function(i) invAList[[i]]%*% RList[[i]])
nomiUList<- lapply(1:length(RList), function(i)rep(i, ncol(RList[[i]])))
#-----------
eta0<-opz$eta0
fam<-opz$fam
maxit.glm<-opz$maxit.glm
#----------------------------
n<-length(y)
min.step<-opz$min.step
rangeZ <- apply(Z, 2, range)
alpha<-opz$alpha
#limZ <- apply(Z, 2, quantile, names=FALSE, probs=c(alpha[1],alpha[2]))
limZ <- if(is.null(opz$limZ)) apply(Z, 2, quantile, names=FALSE, probs=c(alpha[1],alpha[2])) else opz$limZ
psi<-PSI[1,]
id.psi.group<-opz$id.psi.group
conv.psi<-opz$conv.psi
digits<-opz$digits
pow<-opz$pow
nomiOK<-opz$nomiOK
toll<-opz$toll
hh<-opz$h
gap<-opz$gap
#fix.npsi<-opz$fix.npsi
fix.npsi<-opz$stop.if.error
dev.new<-opz$dev0
visual<-opz$visual
it.max<-old.it.max<-opz$it.max
fc<-opz$fc
names(psi)<-id.psi.group
it <- 0
epsilon <- 10
k.values<-dev.values<- NULL
psi.values <-list()
#psi.values[[length(psi.values) + 1]] <- NA
#id.psi.ok<-rep(TRUE, length(psi))
sel.col.XREG<-unique(sapply(colnames(XREG), function(x)match(x,colnames(XREG))))
if(is.numeric(sel.col.XREG)) XREG<-XREG[,sel.col.XREG,drop=FALSE] #elimina le ripetizioni, ad es. le due intercette..
#invXtX <- opz$invXtX
#Xty <- opz$Xty
if (!in.psi(limZ, PSI, FALSE))
stop("starting psi out of the range.. see 'alpha' in seg.control.",
call. = FALSE)
if (!far.psi(Z, PSI, id.psi.group, FALSE))
stop("psi values too close each other. Please change (decreases number of) starting values",
call. = FALSE)
n.psi1 <- ncol(Z)
#browser()
Zseg <- XREG[,opz$nomiSeg,drop=FALSE] #
XREG <- XREG[, -match(opz$nomiSeg, colnames(XREG)),drop=FALSE]
U <- ((Z - PSI) * (Z > PSI))
#if (pow[1] != 1) U <- U^pow[1]
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg[,i], U[, id.psi.group==i])%*%invA.RList[[i]] #
#nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U<-do.call(cbind, UList) #la matrice del disegno sara' cbind(X, U)
obj0 <- suppressWarnings(glm.fit(x = cbind(XREG, U), y = y, offset = offs,
weights = w, family = fam, control = glm.control(maxit = 3), etastart = eta0))
eta0<- obj0$linear.predictors
L0<- obj0$dev
if(it.max==0){
colnames(U) <- paste("U", 1:ncol(U), sep = "")
V <- -(Z > PSI)
colnames(V) <- paste("V", 1:ncol(V), sep = "")
obj <- obj0
L1 <- L0
obj$coefficients <- c(obj$coefficients, rep(0, ncol(V)))
#names(obj$coefficients) <- names.coef
obj$epsilon <- epsilon
obj$it <- it
obj <- list(obj = obj, it = it, psi = psi, psi.values = psi.values, X=XREG, idU=ncol(XREG)+1:(ncol(U)),
U = U, V = V, rangeZ = rangeZ, epsilon = epsilon, nomiOK = nomiOK,
dev.no.gap = L1, id.psi.group = id.psi.group,
id.warn = TRUE,
constr=list(RList=RList, invAList=invAList, invA.RList=invA.RList, nomiUList =nomiUList)
)
return(obj)
}
if(is.null(maxit.glm)){
Nboot <- if(is.null(opz$Nboot)) 0 else opz$Nboot
maxit.glm1 <- rep(1:it.max + Nboot, 1:it.max+1) #2*rep(1:it.max, 1:it.max)
maxit.glm1 <- pmin(maxit.glm1, 25)
} else {
maxit.glm1 <- rep(maxit.glm, it.max)
}
n.intDev0<-nchar(strsplit(as.character(L0),"\\.")[[1]][1])
#dev.values[length(dev.values) + 1] <- opz$dev0 #del modello iniziale (senza psi)
dev.values[length(dev.values) + 1] <- L0 #modello con psi iniziali
psi.values[[length(psi.values) + 1]] <- psi #psi iniziali
if (visual) { #questo e' il visual di "lm"
cat(paste("iter = ", sprintf("%2.0f", 0), " dev = ",
sprintf(paste("%", n.intDev0 + 6, ".5f", sep = ""),
L0), " k = ", sprintf("%2.0f", NA), " n.psi = ",
formatC(length(unlist(psi)), digits = 0, format = "f"),
" ini.psi = ", paste(formatC(unlist(psi), digits = 3,
format = "f"), collapse = " "), sep = ""), "\n")
}
id.warn <- FALSE
id.psi.changed <- rep(FALSE, it.max)
#============================================== inizio ciclo
#browser()
#Zseg <- XREG[,opz$nomiSeg,drop=FALSE]
#XREG <- XREG[, -match(opz$nomiSeg, colnames(XREG)),drop=FALSE]
tolOp<-if(is.null(opz$tol.opt)) seq(.001, .Machine$double.eps^0.25, l=it.max) else rep(opz$tol.opt, it.max)
idU=ncol(XREG)+1:(ncol(U))
while (abs(epsilon) > toll) {
it<-it+1
n.psi0 <- n.psi1
n.psi1 <- ncol(Z)
if(n.psi1!=n.psi0){
U <- ((Z-PSI)*(Z>PSI)) #pmax((Z - PSI), 0)^pow[1]
#if(pow[1]!=1) U<-U^pow[1]
obj0 <- suppressWarnings(glm.fit(x = cbind(XREG, U), y = y, offset = offs,
weights = w, family = fam, control = glm.control(maxit = maxit.glm1[it]), etastart = eta0))
eta0<-obj0$linear.predictors
L0< - obj0$dev
} else {
V <- (Z>PSI)
U <- (Z - PSI) * V
V <- -V
}
#V <- dpmax(Z,PSI,pow=pow[2])# ifelse((Z > PSI), -1, 0)
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg[,i], U[, id.psi.group==i])%*%invA.RList[[i]] #
nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U<-do.call(cbind, UList)
X <- cbind(XREG, U, V)
#rownames(X) <- NULL
#colnames(X)[(ncol(XREG) + 1):ncol(U)] <- paste("U",
# 1:ncol(U), sep = "") #, paste("V", 1:ncol(V), sep = ""))
obj <- suppressWarnings(glm.fit(X, y, offset = offs, weights = w, family = fam,
control = glm.control(maxit = maxit.glm1[it]), etastart = eta0))
eta0<-obj$linear.predictors
beta.c <- obj$coefficients[idU] # #beta.c <- coef(obj)[ncol(XREG)+(1:ncol(U))]
coefUList <- lapply(1:length(RList), function(i) (invA.RList[[i]]%*%beta.c[unlist(nomiUList)==i])[-1])
beta.c <- unlist(coefUList)
gamma.c <- coef(obj)[colnames(Z)]
if (any(is.na(c(beta.c, gamma.c)))) {
if (fix.npsi) {
if (return.all.sol)
return(list(dev.values, psi.values))
else stop("breakpoint estimate too close or at the boundary causing NA estimates.. too many breakpoints being estimated?",
call. = FALSE)
} else {
id.coef.ok <- !is.na(gamma.c)
psi <- psi[id.coef.ok]
if (length(psi) <= 0) {
warning(paste("All breakpoints have been removed after",
it, "iterations.. returning 0"), call. = FALSE)
return(0)
}
gamma.c <- gamma.c[id.coef.ok]
beta.c <- beta.c[id.coef.ok]
Z <- Z[, id.coef.ok, drop = FALSE]
rangeZ <- rangeZ[, id.coef.ok, drop = FALSE]
limZ <- limZ[, id.coef.ok, drop = FALSE]
nomiOK <- nomiOK[id.coef.ok]
id.psi.group <- id.psi.group[id.coef.ok]
names(psi) <- id.psi.group
}
}
psi.old <- psi
psi <- psi.old + hh*gamma.c/beta.c
#aggiusta la stima di psi..
psi<- adj.psi(psi, limZ)
psi<-unlist(tapply(psi, opz$id.psi.group, sort), use.names =FALSE)
#browser()
a<-optimize(search.min, c(0,1), psi=psi, psi.old=psi.old, X=XREG, y=y, w=w, offs=offs, tol=tolOp[it])
k.values[length(k.values) + 1] <- use.k <- a$minimum
L1<- a$objective
#L1.k[length(L1.k) + 1] <- L1<- a$objective
psi <- psi*use.k + psi.old* (1-use.k)
psi<- adj.psi(psi, limZ)
if (!is.null(digits)) psi <- round(psi, digits)
PSI <- matrix(psi, n, ncol = length(psi), byrow=TRUE)
U1 <- (Z - PSI) * (Z > PSI)
#if (pow[1] != 1) U1 <- U1^pow[1]
#obj1 <- try(mylm(cbind(XREG, U1), y, w, offs), silent = TRUE)
#if (class(obj1)[1] == "try-error") obj1 <- try(lm.wfit(cbind(XREG, U1), y, w, offs), silent = TRUE)
if (visual) {
flush.console()
cat(paste("iter = ", sprintf("%2.0f",it),
" dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), L1), #formatC(L1,width=8, digits=5,format="f"), #era format="fg"
" k = ", sprintf("%2.3f", use.k),
" n.psi = ",formatC(length(unlist(psi)),digits=0,format="f"),
" est.psi = ",paste(formatC(unlist(psi),digits=3,format="f"), collapse=" "), #sprintf('%.2f',x)
sep=""), "\n")
}
epsilon <- (L0 - L1)/(abs(L0) + 0.1)
L0 <- L1
U <- U1
k.values[length(k.values) + 1] <- use.k
psi.values[[length(psi.values) + 1]] <- psi
dev.values[length(dev.values) + 1] <- L0
id.psi.far <- far.psi(Z, PSI, id.psi.group, TRUE, fc = opz$fc)
id.psi.in <- in.psi(limZ, PSI, TRUE)
id.psi.ok <- id.psi.in & id.psi.far
if (!all(id.psi.ok)) {
if (fix.npsi) {
psi <- psi * ifelse(id.psi.far, 1, attr(id.psi.far, "factor"))
PSI <- matrix(psi, n, ncol = length(psi), byrow=TRUE)
id.psi.changed[it] <- TRUE
}
else {
Z <- Z[, id.psi.ok, drop = FALSE]
PSI <- PSI[, id.psi.ok, drop = FALSE]
rangeZ <- rangeZ[, id.psi.ok, drop = FALSE]
limZ <- limZ[, id.psi.ok, drop = FALSE]
nomiOK <- nomiOK[id.psi.ok]
id.psi.group <- id.psi.group[id.psi.ok]
psi.old <- psi.old[id.psi.ok]
psi <- psi[id.psi.ok]
names(psi) <- id.psi.group
if (ncol(PSI) <= 0) {
warning(paste("All breakpoints have been removed after",
it, "iterations.. returning 0"), call. = FALSE)
return(0)
}
}
}
if (it >= it.max) {
id.warn <- TRUE
break
}
} #end while..
##############################################################################
if (id.psi.changed[length(id.psi.changed)])
warning(paste("Some psi (", (1:length(psi))[!id.psi.far],
") changed after the last iter.", sep = ""), call. = FALSE)
if (id.warn)
warning(paste("max number of iterations (", it, ") attained",
sep = ""), call. = FALSE)
attr(psi.values, "dev") <- dev.values
attr(psi.values, "k") <- k.values
psi <- unlist(tapply(psi, id.psi.group, sort))
names(psi) <- id.psi.group
names.coef <- names(obj$coefficients)
#PSI.old <- PSI
PSI <- matrix(psi, n, ncol = length(psi), byrow=TRUE)
#if (sd(PSI - PSI.old) > 0 || id.psi.changed[length(id.psi.changed)]) {
#browser()
V <- -(Z > PSI)
colnames(V) <- paste("V", 1:ncol(V), sep = "")
U <- (Z - PSI) * (Z > PSI)
for(i in 1:length(RList)){#trasforma le U
UList[[i]]<- cbind(Zseg[,i], U[, id.psi.group==i])%*%invA.RList[[i]]
nomiUList[[i]]<- rep(i, ncol(UList[[i]]) )
}
U<-do.call(cbind, UList) #X <- cbind(XREG, U, V)
colnames(U) <- paste("U", 1:ncol(U), sep = "")
obj <- try(suppressWarnings(glm.fit(cbind(XREG, U), y = y, offset = offs,
weights = w, family = fam, control = glm.control(maxit = maxit.glm1[it]), etastart = eta0)),
silent = TRUE)
L1<- obj$dev
#browser()
obj$coefficients <- c(obj$coefficients, rep(0, ncol(V)))
#names(obj$coefficients) <- names.coef
obj$epsilon <- epsilon
obj$it <- it
obj <- list(obj = obj, it = it, psi = psi, psi.values = psi.values, X=XREG, idU=ncol(XREG)+1:(ncol(U)),
U = U, V = V, rangeZ = rangeZ, epsilon = epsilon, nomiOK = nomiOK,
#SumSquares.no.gap = L1,
dev.no.gap=L1,
id.psi.group = id.psi.group, id.warn = id.warn,
constr=list(RList=RList, invAList=invAList, invA.RList=invA.RList, nomiUList =nomiUList))
#SlopeList <- lapply(1:length(RList), function(i) RList[[i]]%*%beta.c[unlist(nomiUList)==i])
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.