View source: R/runMI-modification.R
modindices.mi | R Documentation |
Modification indices (1-df Lagrange multiplier tests) from a latent variable model fitted to multiple imputed data sets. Statistics for releasing one or more fixed or constrained parameters in model can be calculated by pooling the gradient and information matrices across imputed data sets in a method proposed by Mansolf, Jorgensen, & Enders (2020)—analogous to the "D1" Wald test proposed by Li, Meng, Raghunathan, & Rubin (1991)—or by pooling the complete-data score-test statistics across imputed data sets (i.e., "D2"; Li et al., 1991).
modindices.mi(object, test = c("D2", "D1"), omit.imps = c("no.conv", "no.se"), standardized = TRUE, cov.std = TRUE, information = "expected", power = FALSE, delta = 0.1, alpha = 0.05, high.power = 0.75, sort. = FALSE, minimum.value = 0, maximum.number = nrow(LIST), na.remove = TRUE, op = NULL) modificationIndices.mi(object, test = c("D2", "D1"), omit.imps = c("no.conv", "no.se"), standardized = TRUE, cov.std = TRUE, information = "expected", power = FALSE, delta = 0.1, alpha = 0.05, high.power = 0.75, sort. = FALSE, minimum.value = 0, maximum.number = nrow(LIST), na.remove = TRUE, op = NULL)
object |
An object of class |
test |
|
omit.imps |
|
standardized |
|
cov.std |
|
information |
|
power |
|
delta |
The value of the effect size, as used in the post-hoc power
computation, currently using the unstandardized metric of the |
alpha |
The significance level used for deciding if the modification index is statistically significant or not. |
high.power |
If the computed power is higher than this cutoff value,
the power is considered 'high'. If not, the power is considered 'low'.
This affects the values in the |
sort. |
|
minimum.value |
|
maximum.number |
|
na.remove |
|
op |
|
A data.frame
containing modification indices and (S)EPCs.
When test = "D2"
, each (S)EPC will be pooled by taking its
average across imputations. When test = "D1"
, EPCs will be
calculated in the standard way using the pooled gradient and information,
and SEPCs will be calculated by standardizing the EPCs using model-implied
(residual) variances.
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Adapted from lavaan source code, written by Yves Rosseel (Ghent University; Yves.Rosseel@UGent.be)
test = "D1"
method proposed by
Maxwell Mansolf (University of California, Los Angeles;
mamansolf@gmail.com)
Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford.
Li, K.-H., Meng, X.-L., Raghunathan, T. E., & Rubin, D. B. (1991). Significance levels from repeated p-values with multiply-imputed data.Statistica Sinica, 1(1), 65–92. Retrieved from https://www.jstor.org/stable/24303994
Mansolf, M., Jorgensen, T. D., & Enders, C. K. (2020). A multiple imputation score test for model modification in structural equation models. Psychological Methods, 25(4), 393–411. doi: 10.1037/met0000243
## Not run: ## impose missing data for example HSMiss <- HolzingerSwineford1939[ , c(paste("x", 1:9, sep = ""), "ageyr","agemo","school")] set.seed(12345) HSMiss$x5 <- ifelse(HSMiss$x5 <= quantile(HSMiss$x5, .3), NA, HSMiss$x5) age <- HSMiss$ageyr + HSMiss$agemo/12 HSMiss$x9 <- ifelse(age <= quantile(age, .3), NA, HSMiss$x9) ## impute missing data library(Amelia) set.seed(12345) HS.amelia <- amelia(HSMiss, m = 20, noms = "school", p2s = FALSE) imps <- HS.amelia$imputations ## specify CFA model from lavaan's ?cfa help page HS.model <- ' visual =~ x1 + x2 + x3 textual =~ x4 + x5 + x6 speed =~ x7 + x8 + x9 ' out <- cfa.mi(HS.model, data = imps) modindices.mi(out) # default: Li et al.'s (1991) "D2" method modindices.mi(out, test = "D1") # Li et al.'s (1991) "D1" method ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.