View source: R/parcelAllocation.R
parcelAllocation | R Documentation |
This function generates a given number of randomly generated item-to-parcel allocations, fits a model to each allocation, and provides averaged results over all allocations.
parcelAllocation(model, data, parcel.names, item.syntax, nAlloc = 100, fun = "sem", alpha = 0.05, fit.measures = c("chisq", "df", "cfi", "tli", "rmsea", "srmr"), ..., show.progress = FALSE, iseed = 12345, do.fit = TRUE, return.fit = FALSE, warn = FALSE)
model |
|
data |
A |
parcel.names |
|
item.syntax |
lavaan model syntax specifying the model
that would be fit to all of the unparceled items, including items that
should be randomly allocated to parcels appearing in |
nAlloc |
The number of random items-to-parcels allocations to generate. |
fun |
|
alpha |
Alpha level used as criterion for significance. |
fit.measures |
|
... |
Additional arguments to be passed to
|
show.progress |
If |
iseed |
(Optional) Random seed used for parceling items. When the same
random seed is specified and the program is re-run, the same allocations
will be generated. Using the same |
do.fit |
If |
return.fit |
If |
warn |
Whether to print warnings when fitting |
This function implements the random item-to-parcel allocation procedure described in Sterba (2011) and Sterba and MacCallum (2010). The function takes a single data set with item-level data, randomly assigns items to parcels, fits a structural equation model to the parceled data (using lavaanList), and repeats this process for a user-specified number of random allocations. Results from all fitted models are summarized in the output. For further details on the benefits of randomly allocating items to parcels, see Sterba (2011) and Sterba and MccCallum (2010).
Estimates |
A |
SE |
A |
Fit |
A |
Model |
A |
Terrence D. Jorgensen (University of Amsterdam; TJorgensen314@gmail.com)
Sterba, S. K. (2011). Implications of parcel-allocation variability for comparing fit of item-solutions and parcel-solutions. Structural Equation Modeling, 18(4), 554–577. doi: 10.1080/10705511.2011.607073
Sterba, S. K. & MacCallum, R. C. (2010). Variability in parameter estimates and model fit across random allocations of items to parcels. Multivariate Behavioral Research, 45(2), 322–358. doi: 10.1080/00273171003680302
Sterba, S. K., & Rights, J. D. (2016). Accounting for parcel-allocation variability in practice: Combining sources of uncertainty and choosing the number of allocations. Multivariate Behavioral Research, 51(2–3), 296–313. doi: 10.1080/00273171.2016.1144502
Sterba, S. K., & Rights, J. D. (2017). Effects of parceling on model selection: Parcel-allocation variability in model ranking. Psychological Methods, 22(1), 47–68. doi: 10.1037/met0000067
PAVranking
for comparing 2 models,
poolMAlloc
for choosing the number of allocations
## Fit 2-factor CFA to simulated data. Each factor has 9 indicators. ## Specify the item-level model (if NO parcels were created) item.syntax <- c(paste0("f1 =~ f1item", 1:9), paste0("f2 =~ f2item", 1:9)) cat(item.syntax, sep = "\n") ## Below, we reduce the size of this same model by ## applying different parceling schemes ## 3-indicator parcels mod.parcels <- ' f1 =~ par1 + par2 + par3 f2 =~ par4 + par5 + par6 ' ## names of parcels (parcel.names <- paste0("par", 1:6)) ## Not run: ## override default random-number generator to use parallel options RNGkind("L'Ecuyer-CMRG") parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100, parcel.names = parcel.names, item.syntax = item.syntax, std.lv = TRUE, # any addition lavaan arguments parallel = "snow") # parallel options ## POOL RESULTS by treating parcel allocations as multiple imputations ## Details provided in Sterba & Rights (2016); see ?poolMAlloc. ## save list of data sets instead of fitting model yet dataList <- parcelAllocation(mod.parcels, data = simParcel, nAlloc = 100, parcel.names = parcel.names, item.syntax = item.syntax, do.fit = FALSE) ## now fit the model to each data set fit.parcels <- cfa.mi(mod.parcels, data = dataList, std.lv = TRUE) summary(fit.parcels) # uses Rubin's rules anova(fit.parcels) # pooled test statistic class?lavaan.mi # find more methods for pooling results ## End(Not run) ## multigroup example simParcel$group <- 0:1 # arbitrary groups for example mod.mg <- ' f1 =~ par1 + c(L2, L2)*par2 + par3 f2 =~ par4 + par5 + par6 ' ## names of parcels (parcel.names <- paste0("par", 1:6)) parcelAllocation(mod.mg, data = simParcel, parcel.names, item.syntax, std.lv = TRUE, group = "group", group.equal = "loadings", nAlloc = 20, show.progress = TRUE) ## parcels for first factor, items for second factor mod.items <- ' f1 =~ par1 + par2 + par3 f2 =~ f2item2 + f2item7 + f2item8 ' ## names of parcels (parcel.names <- paste0("par", 1:3)) parcelAllocation(mod.items, data = simParcel, parcel.names, item.syntax, nAlloc = 20, std.lv = TRUE) ## mixture of 1- and 3-indicator parcels for second factor mod.mix <- ' f1 =~ par1 + par2 + par3 f2 =~ f2item2 + f2item7 + f2item8 + par4 + par5 + par6 ' ## names of parcels (parcel.names <- paste0("par", 1:6)) parcelAllocation(mod.mix, data = simParcel, parcel.names, item.syntax, nAlloc = 20, std.lv = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.