Nothing
check.deprecated <- function(...) {
nms <- names(list(...))
replace.args <- list(CO = "covariates", COt = "time.covariates", OD = "data")
wrn <- names(replace.args) %in% nms
if (any(wrn)) {
for (i in which(wrn)) {
msg <- paste0(
"The '", names(replace.args)[i],
"' argument is no longer supported. Please use '",
replace.args[i], "' instead."
)
warning(msg)
}
}
deleted.args <- c("mice.return", "include")
wrn <- deleted.args %in% nms
if (any(wrn)) {
for (i in which(wrn)) {
msg <- paste0(
"The '", deleted.args[i], "' argument is no longer supported. An object
of class seqimp is returned by the function since version 2.0"
)
warning(msg)
}
}
invisible(NULL)
}
dataxtract <- function(data, var) {
if (inherits(data, "tbl_df")) {
data <- as.data.frame(data)
}
if (missing(var) || is.null(var) || is.na(var[1])) {
seqdata <- data
} else {
seqdata <- subset(data, , var)
}
return(seqdata)
}
dataputback <- function(data, var, data.traj) {
if (missing(var) || is.null(var) || is.na(var[1])) {
seqdata <- data
} else {
data[, var] <- data.traj
}
return(data)
}
covxtract <- function(data, covariates) {
if (!inherits(covariates, "data.frame")) {
if (missing(covariates) || is.null(covariates) || is.na(covariates[1])) {
data.cov <- matrix(NA, nrow = 1, ncol = 1)
} else if (length(covariates) == nrow(data) & !covariates[1] %in% colnames(data)) {
data.cov <- covariates
} else {
data.cov <- subset(data, , covariates)
}
} else {
data.cov <- covariates
}
return(data.cov)
}
check.data <- function(OD, CO, COt, var) {
data <- list()
data["nco"] <- compute.ncol(CO)
data["ncot"] <- compute.ncol(COt)
data$ncot <- check.ncot(data$ncot, ncol(OD))
data$rowsNA <- rows.allmiss(OD)
if (length(data$rowsNA) > 0) {
data$OD <- OD[-data$rowsNA, ]
if (data$nco > 0) {
data$CO <- CO[-data$rowsNA, ]
}
if (data$ncot > 0) {
data$COt <- COt[-data$rowsNA, ]
}
} else {
data$OD <- OD
data$CO <- CO
data$COt <- COt
}
data[c(
"OD", "ODi", "ODClass", "ODlevels", "k",
"nr", "nc"
)] <- check.traj(data$OD)
data$COtsample <- compute.COtsample(data$COt, data$ncot, data$nr, data$nc)
return(data)
}
check.predictors <- function(np, nf, npt, nfi) {
if (np == 0 & nf == 0) {
stop("/!\\ We can't have np as well as nf equal to '0' at the same
time")
}
if (np < 0 | nf < 0) {
stop("/!\\ np and nf can't be negative numbers")
}
if (nfi < 0 | npt < 0) {
stop("/!\\ nfi and npt can't be negative numbers")
}
return(list(np = np, nf = nf, npt = npt, nfi = nfi))
}
check.regr <- function(regr) {
if ((regr != "rf") & (regr != "multinom")) {
stop("/!\\ regr defines the type of regression model you want to use.
It has to be either assigned to character 'multinom'
(for multinomialregression) or'rf' (for random forests)")
}
return(regr)
}
check.ncot <- function(ncot, nc) {
if (ncot %% nc != 0) {
stop("/!\\ Each time-dependent covariates contained in COt has to have the
same number of columns as the dataset.")
}
return(ncot)
}
compute.ncol <- function(x) {
if (all(is.na(x)) == FALSE) {
if (is.null(dim(x))) {
return(1)
} else {
return(ncol(x))
}
}
return(0)
}
rows.allmiss <- function(OD) {
rowsNA <- c()
for (i in 1:nrow(OD)) {
if (all(is.na(OD[i, ]))) {
rowsNA <- c(rowsNA, i)
}
}
return(rowsNA)
}
compute.COtsample <- function(COt, ncot, nr, nc) {
COtsample <- vector()
if (ncot > 0) {
COtsample <- as.data.frame(matrix(nrow = nr, ncol = 0))
for (d in 1:(ncot / nc)) {
COtsample <- cbind(COtsample, COt[, 1 + (d - 1) * nc])
}
}
return(COtsample)
}
check.traj <- function(OD) {
nc <- ncol(OD)
nr <- nrow(OD)
ODClass <- class(OD[1, 1])
if ((ODClass != "factor") & (ODClass != "character")) {
stop("/!\\ The class of the variables contained in your original dataset
should be either 'factor' or 'character'")
}
#*************************************
ODlevels <- vector()
ODlevels <- sort(unique(as.vector(as.matrix(OD))))
k <- length(ODlevels)
OD <- as.data.frame(sapply(OD, mapvalues,
from = ODlevels,
to = as.character(as.vector(1:length(ODlevels)))
))
OD <- apply(as.matrix(OD), 2, as.numeric)
ODi <- OD
if (ODClass == "factor") {
for (j in 1:nc) {
ODi[, j] <- factor(x = OD[, j], levels = c(1:k))
}
}
return(list(OD, ODi, ODClass, ODlevels, k, nr, nc))
}
check.cores <- function(ncores, available, m) {
if (is.null(ncores)) {
ncores <- min(available - 1, m)
} else {
if (ncores > available) {
warning(paste(
"'ncores' exceeds the maximum number of available cores on
your machine, and is set to",
min(available - 1, m)
))
}
if (ncores > m) {
warning(paste(
"'ncores' exceeds the number of imputations, and is set to",
min(available - 1, m)
))
}
ncores <- min(available - 1, m, ncores)
}
ncores
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.