Nothing
#' Graph estimated antibody decay curve
#'
#' @param curve_params a [data.frame()] containing MCMC samples of antibody decay curve parameters
#' @param verbose verbose output
#' @param antigen_isos antigen isotypes
#' @returns a [ggplot2::ggplot()] object
#' @export
#'
#' @examples
#' curve <-
#' typhoid_curves_nostrat_100 |>
#' dplyr::filter(antigen_iso %in% c("HlyE_IgA", "HlyE_IgG"))
#'
#' plot1 <- graph.curve.params(curve)
#'
#' print(plot1)
#'
graph.curve.params <- function(
curve_params,
antigen_isos = unique(curve_params$antigen_iso),
verbose = FALSE) {
if (verbose) {
message(
"Graphing curves for antigen isotypes: ",
paste(antigen_isos, collapse = ", ")
)
}
curve_params <- curve_params %>%
dplyr::filter(.data$antigen_iso %in% antigen_isos)
day2yr <- 365.25
tx2 <- 10^seq(-1, 3.1, 0.025)
bt <- function(y0, y1, t1) {
log(y1 / y0) / t1
}
# uses r > 1 scale for shape
ab <- function(t, y0, y1, t1, alpha, shape) {
beta <- bt(y0, y1, t1)
yt <- 0
if (t <= t1) {
yt <- y0 * exp(beta * t)
}
if (t > t1) {
yt <- (y1^(1 - shape) - (1 - shape) * alpha * (t - t1))^(1 / (1 - shape))
}
return(yt)
}
d <- curve_params
# %>%
# mutate(alpha = .data$alpha / day2yr)
dT <-
data.frame(t = tx2) %>%
mutate(ID = 1:n()) %>%
pivot_wider(
names_from = .data$ID,
values_from = .data$t,
names_prefix = "time"
) %>%
dplyr::slice(
rep(1:dplyr::n(),
each = nrow(d)
)
)
serocourse.all <-
cbind(d, dT) %>%
tidyr::pivot_longer(
cols = dplyr::starts_with("time"),
values_to = "t"
) %>%
select(-"name") %>%
rowwise() %>%
mutate(res = ab(
.data$t,
.data$y0,
.data$y1,
.data$t1,
.data$alpha,
.data$r
)) %>%
ungroup()
if (verbose) message("starting to compute quantiles")
serocourse.sum <- serocourse.all %>%
summarise(
.by = c("antigen_iso", "t"),
res.med = quantile(.data$res, 0.5),
res.low = quantile(.data$res, 0.025),
res.high = quantile(.data$res, 0.975),
res.p75 = quantile(.data$res, 0.75),
res.p25 = quantile(.data$res, 0.25),
res.p10 = quantile(.data$res, 0.10),
res.p90 = quantile(.data$res, 0.90)
) %>%
pivot_longer(
names_to = "quantile",
cols = c(
"res.med",
"res.low",
"res.high",
"res.p25",
"res.p75",
"res.p10",
"res.p90"
),
names_prefix = "res.",
values_to = "res"
)
ggplot2::ggplot() +
ggplot2::geom_line(
data = serocourse.sum %>%
filter(.data$quantile == "med"),
ggplot2::aes(
x = .data$t,
y = .data$res
),
linewidth = 1
) +
ggplot2::geom_line(
data = serocourse.sum %>% filter(quantile == "p10"),
ggplot2::aes(
x = .data$t,
y = .data$res
),
linewidth = .5
) +
ggplot2::geom_line(
data = serocourse.sum %>%
filter(quantile == "p90"),
ggplot2::aes(
x = .data$t,
y = .data$res
),
linewidth = .5
) +
ggplot2::facet_wrap(
~ .data$antigen_iso,
ncol = 2
) +
ggplot2::scale_y_log10(
limits = c(0.9, 2000),
breaks = c(1, 10, 100, 1000),
minor_breaks = NULL
) +
ggplot2::theme_minimal() +
ggplot2::theme(axis.line = ggplot2::element_line()) +
ggplot2::labs(x = "Days since fever onset", y = "ELISA units")
}
# ggplot() +
# geom_line(data = serocourse.all, aes(x= t, y = res, group = iter)) +
# facet_wrap(~antigen_iso, ncol=2) +
# scale_y_log10(limits = c(0.9, 2000), breaks = c(1, 10, 100, 1000), minor_breaks = NULL) +
# theme_minimal() +
# theme(axis.line=element_line()) +
# labs(x="Days since fever onset", y="ELISA units")
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.