Nothing
#' Generate a nxn curve based on expansion rules
#'
#' @param rules An `sfc_rules` object.
#' @param name Name of the curve. The name will be used for the functions that will be generated.
#' @param envir Environment where the functions are exported.
#' @param flippable Whether `rules` can have flipped version? If it is `TRUE`, the generated function also accepts the `flip` argument.
#' @param verbose Whether to print messages?
#'
#' @details
#' Two functions will be exported:
#'
#' - `sfc_{name}()`
#' - `draw_rules_{name}()`
#'
#' For the simplicity, flipping is not supported yet.
#'
#' @export
#' @return No value is returned.
#' @examples
#' UNIVERSE_4x4_PEANO = c("I", "R", "L")
#'
#' RULES_4x4_PEANO = list()
#' RULES_4x4_PEANO[["I"]][[1]] = sfc_unit("RIILLIIRRIILLIIR", rot = 0, universe = UNIVERSE_4x4_PEANO)
#' RULES_4x4_PEANO[["I"]][[2]] = sfc_hflip(RULES_4x4_PEANO[["I"]][[1]])
#' RULES_4x4_PEANO[["R"]][[1]] = sfc_unit("IIIRRIILLIIRRIIL", rot = 0, universe = UNIVERSE_4x4_PEANO)
#' RULES_4x4_PEANO[["R"]][[2]] = sfc_rotate(sfc_unit("LIIRRIILLIIRRIII",
#' rot = 270, universe = UNIVERSE_4x4_PEANO), 90)
#' RULES_4x4_PEANO[["L"]][[1]] = sfc_hflip(RULES_4x4_PEANO[["R"]][[2]])
#' RULES_4x4_PEANO[["L"]][[2]] = sfc_hflip(RULES_4x4_PEANO[["R"]][[1]])
#'
#' SFC_RULES_4x4_PEANO = sfc_rules(rules = RULES_4x4_PEANO,
#' name = "Peano 4x4",
#' bases = BASE_LIST[UNIVERSE_4x4_PEANO])
#'
#' sfc_generator(SFC_RULES_4x4_PEANO, "4x4_peano")
#' draw_rules_4x4_peano()
#' sfc_4x4_peano("I", 111) |> plot()
sfc_generator = function(rules, name, envir = topenv(parent.frame()),
flippable = FALSE, verbose = TRUE) {
RULES = rules
NAME = name
if(!(identical(sort(names(RULES@rules)), c("I", "L", "R")) || identical(sort(names(RULES@rules)), c("I", "J", "L", "R")))) {
stop_wrap("`rules` should only contain base patterns I/J/R/L.")
}
if(any(sapply(RULES@rules, length) > 2)) {
stop_wrap("`rules` should only contain one or two traverse codes for a single base pattern.")
}
for(nm in names(RULES@rules)) {
for(i in seq_along(RULES@rules[[nm]])) {
pa = get_one_traverse_path(RULES, RULES@rules[[nm]][[i]])
if(length(pa) == 0) {
stop_wrap("Cannot find a complete traverse path for rule ", nm, "_", i)
}
}
}
code = as.vector(unique(t(do.call(cbind, lapply(RULES@rules, function(x) sapply(x, function(y) sort(y@corner)))))))
if(!(identical(code, c(1L, 2L)) || identical(code, c(1L, 2L, 1L, 2L)) || identical(code, c(2L, 1L, 2L, 1L)))) {
stop_wrap("`rules` can only contain 11|22 or 12|21 level-1 units.")
}
if(identical(code, c(1L, 2L))) {
code_num = 2
} else {
code_num = 1
}
if(code_num == 2) {
for(nm in names(RULES@rules)) {
if(!identical(RULES@rules[[nm]][[1]]@corner, c(1L, 2L))) {
stop_wrap("The first pattern should have corner value of [1, 2].")
}
}
}
if(flippable) {
flip = lapply(RULES@rules, function(x) {
lapply(x, function(u) sfc_flip_unit(u, RULES@bases))
})
if(identical(RULES@rules[[1]][[1]], flip[[1]][[1]])) {
if(verbose) {
message("The flipped rules are identical to the original rules. Flipping will not be supported.")
}
} else {
RULES@flip = flip
}
}
cl = paste0("sfc_", name)
setClass(cl,
contains = "sfc_nxn",
prototype = list(mode = sfc_mode(RULES)), where = envir)
sfc_fun = function(seed, code = integer(0), rot = 0L, flip = FALSE) {
code = .parse_code(code, 1:2)
if(inherits(seed, "character")) {
seed = sfc_seed(seed, rot = rot, universe = sfc_universe(RULES))
} else if(inherits(seed, "sfc_seed")) {
seed@seq = factor(as.vector(seed@seq), levels = sfc_universe(RULES))
} else {
seed = sfc_seed(seq = seed@seq, rot = seed@rot)
}
p = as(seed, cl)
p@seed = seed
p@level = 0L
p@mode = sfc_mode(RULES)
if(length(p@rules@flip) == 0) {
for(i in seq_along(code)) {
p = sfc_expand(p, code[i])
}
} else {
if(is.logical(flip)) {
if(!(length(flip) == length(seed) || length(flip) == p@mode^2 || length(flip) == 1)) {
stop_wrap(paste0("If `flip` is a logical vector, it should have a length the same as `seed` or ", p@mode^2, "\n"))
}
}
if(is.function(flip)) {
for(i in seq_along(code)) {
p = sfc_expand(p, code[i], flip = flip(p))
}
} else {
for(i in seq_along(code)) {
if(i == 1) {
if(length(flip) == length(seed)) {
p = sfc_expand(p, code[i], flip = flip)
} else {
p = sfc_expand(p, code[i], flip = flip[1])
}
} else if (i == 2) {
if(length(flip) == p@mode^2) {
} else {
flip = rep(flip, each = p@mode^2)
}
p = sfc_expand(p, code[i], flip = flip)
} else {
flip = rep(flip, each = p@mode^2)
p = sfc_expand(p, code[i], flip = flip)
}
}
}
}
p@expansion = as.integer(code)
p@universe = sfc_universe(RULES)
p
}
setAs("sfc_sequence", cl, function(from) {
p = new(cl)
p@seq = from@seq
levels(p@seq) = sfc_universe(RULES)
if(any(is.na(p@seq))) {
stop_wrap("Base letters should all be in `sfc_universe(RULES)`.")
}
p@rot = from@rot
p@universe = sfc_universe(RULES)
p@level = 0L
p@mode = sfc_mode(RULES)
p@rules = RULES
p
}, where = envir)
setMethod("sfc_expand",
signature = cl,
definition = function(p, code, flip = FALSE) {
seq = p@seq
rot = p@rot
n = length(p@seq)
rules = p@rules
if(length(rules@flip) == 0) {
flip = FALSE
}
tl = integer(n)
if(code_num == 2) {
tl[1] = code
if(n > 1) {
for(i in 2:n) {
tl[i] = traverse_type_2x2(tl[i-1], rot[i-1], rot[i])
}
}
} else {
tl = rep(1L, n)
}
sfc_expand_by_rules(rules, p, code = tl, flip = flip)
}, where = envir)
draw_rules = function(flip = FALSE) {
p = sfc_fun("I", flip = flip)
if(length(p@rules@flip) == 0) {
flip = FALSE
}
grid.newpage()
if(flip) {
rules = p@rules@flip
} else {
rules = p@rules@rules
}
equation_max_width = max(do.call("unit.c", lapply(names(rules), function(nm) {
do.call("unit.c", lapply(seq_along(rules[[nm]]), function(i) {
convertWidth(grobWidth(grob_math(tex_pattern(nm, i, rules[[nm]][[i]]), x = 0, y = 0)), "mm")
}))
})))
gb1 = grob_single_base_rule(p, "I", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size, just = c("left", "top"))
nc = length(gb1$children)
gb1$children[[nc]]$width = gb1$children[[nc]]$width
grid.draw(gb1)
if("J" %in% sfc_universe(p)) {
gb2 = grob_single_base_rule(p, "J", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size - gb1$vp$height, just = c("left", "top"))
nc = length(gb2$children)
gb2$children[[nc]]$width = gb2$children[[nc]]$width
grid.draw(gb2)
gb3 = grob_single_base_rule(p, "R", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size - gb1$vp$height - gb2$vp$height, just = c("left", "top"))
nc = length(gb3$children)
gb3$children[[nc]]$width = gb3$children[[nc]]$width
grid.draw(gb3)
gb4 = grob_single_base_rule(p, "L", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size - gb1$vp$height - gb2$vp$height - gb3$vp$height, just = c("left", "top"))
nc = length(gb4$children)
gb4$children[[nc]]$width = gb4$children[[nc]]$width
grid.draw(gb4)
} else {
gb2 = grob_single_base_rule(p, "R", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size - gb1$vp$height, just = c("left", "top"))
nc = length(gb2$children)
gb2$children[[nc]]$width = gb2$children[[nc]]$width
grid.draw(gb2)
gb3 = grob_single_base_rule(p, "L", equation_max_width = equation_max_width, flip = flip, x = size, y = unit(1, "npc") - size - gb1$vp$height - gb2$vp$height, just = c("left", "top"))
nc = length(gb3$children)
gb3$children[[nc]]$width = gb3$children[[nc]]$width
grid.draw(gb3)
}
}
assign(paste0("sfc_", NAME), sfc_fun, envir = envir)
assign(paste0("draw_rules_", NAME), draw_rules, envir = envir)
if(verbose) {
cat("The following two functions are exported to the current top environment:\n", sep = "")
cat(" - ", paste0("sfc_", NAME), "()\n", sep = "")
cat(" - ", paste0("draw_rules_", NAME), "()\n", sep = "")
if(length(RULES@flip) > 0) {
cat("")
cat("flipping is supported.\n")
}
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.