inst/doc/v3_analyzing_landing.R

## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  fig.height=5, fig.width=8, 
  message=FALSE, warning=FALSE,
  comment = "#>"
)

## ----setup--------------------------------------------------------------------


## -----------------------------------------------------------------------------
library(sfo)
library(dplyr)
library(plotly)

d <- sfo_stats

head(d)

## -----------------------------------------------------------------------------
d$date <- as.Date(paste(substr(d$activity_period, 1,4), 
                        substr(d$activity_period, 5,6), 
                        "01", sep ="/"))

## -----------------------------------------------------------------------------
str(d)

## -----------------------------------------------------------------------------
d %>% 
  group_by(date) %>%
  summarise(landing_count = sum(landing_count)) %>%
  plot_ly(x = ~ date, y = ~ landing_count,
          type = "scatter", mode = "lines") %>% 
  layout(title = "Montly Landing in SFO Airport",
         yaxis = list(title = "Number of Landing"),
         xaxis = list(title = "Source: San Francisco data portal (DataSF)"))


## -----------------------------------------------------------------------------
d %>% 
  group_by(date, geo_region) %>%
  summarise(landing_count = sum(landing_count)) %>%
  as.data.frame() %>%
plot_ly(x = ~ date, 
        y = ~ landing_count,
        type = 'scatter', 
        mode = 'none', 
        stackgroup = 'one', 
        groupnorm = 'percent', fillcolor = ~ geo_region) %>%
  layout(title = "Dist. of Landing at SFO by Region",
         yaxis = list(title = "Percentage",
                      ticksuffix = "%"))

## -----------------------------------------------------------------------------
d %>% 
      filter(activity_period >= 201901 & activity_period < 202001,
             aircraft_manufacturer != "") %>%
      group_by(aircraft_manufacturer) %>%
      summarise(total_landing = sum(landing_count),
                `.groups` = "drop") %>%
      arrange(-total_landing) %>%
      plot_ly(labels = ~ aircraft_manufacturer,
              values = ~ total_landing) %>%
      add_pie(hole = 0.6) %>%
      layout(title = "Landing Distribution by Aircraft Manufacturer During 2019")

## -----------------------------------------------------------------------------
d %>% 
      filter(activity_period >= 201901 & activity_period < 202001,
             aircraft_manufacturer != "") %>%
      group_by(aircraft_manufacturer, aircraft_body_type) %>%
      summarise(total_landing = sum(landing_count),
                `.groups` = "drop") %>%
      arrange(-total_landing)

## -----------------------------------------------------------------------------
d %>%
  filter(activity_period >= 201901 & activity_period < 202001,
             aircraft_manufacturer != "") %>%
  group_by(geo_region, landing_aircraft_type, 
           aircraft_manufacturer, aircraft_model, 
           aircraft_body_type) %>%
  summarise(total_landing = sum(landing_count),
            groups = "drop") %>%
  sankey_ly(cat_cols = c("geo_region", 
                         "landing_aircraft_type", 
                         "aircraft_manufacturer",
                         "aircraft_model",
                         "aircraft_body_type"),
            num_col = "total_landing",
            title = "SFO Landing Summary by Geo Region and Aircraft Type During 2019")  

Try the sfo package in your browser

Any scripts or data that you put into this service are public.

sfo documentation built on March 7, 2021, 1:06 a.m.