Nothing
#' Find rows of data selected on an interactive plot.
#'
#' @description
#' `brushedPoints()` returns rows from a data frame which are under a brush.
#' `nearPoints()` returns rows from a data frame which are near a click, hover,
#' or double-click. Alternatively, set `allRows = TRUE` to return all rows from
#' the input data with an additional column `selected_` that indicates which
#' rows of the would be selected.
#'
#' @section ggplot2:
#' For plots created with ggplot2, it is not necessary to specify the
#' column names to `xvar`, `yvar`, `panelvar1`, and `panelvar2` as that
#' information can be automatically derived from the plot specification.
#'
#' Note, however, that this will not work if you use a computed column, like
#' `aes(speed/2, dist))`. Instead, we recommend that you modify the data
#' first, and then make the plot with "raw" columns in the modified data.
#'
#' @section Brushing:
#' If x or y column is a factor, then it will be coerced to an integer vector.
#' If it is a character vector, then it will be coerced to a factor and then
#' integer vector. This means that the brush will be considered to cover a
#' given character/factor value when it covers the center value.
#'
#' If the brush is operating in just the x or y directions (e.g., with
#' `brushOpts(direction = "x")`, then this function will filter out points
#' using just the x or y variable, whichever is appropriate.
#'
#' @returns
#' A data frame based on `df`, containing the observations selected by the
#' brush or near the click event. For `nearPoints()`, the rows will be sorted
#' by distance to the event.
#'
#' If `allRows = TRUE`, then all rows will returned, along with a new
#' `selected_` column that indicates whether or not the point was selected.
#' The output from `nearPoints()` will no longer be sorted, but you can
#' set `addDist = TRUE` to get an additional column that gives the pixel
#' distance to the pointer.
#'
#' @param df A data frame from which to select rows.
#' @param brush,coordinfo The data from a brush or click/dblclick/hover event
#' e.g. `input$plot_brush`, `input$plot_click`.
#' @param xvar,yvar A string giving the name of the variable on the x or y axis.
#' These are only required for base graphics, and must be the name of
#' a column in `df`.
#' @param panelvar1,panelvar2 A string giving the name of a panel variable.
#' For expert use only; in most cases these will be automatically
#' derived from the ggplot2 spec.
#' @param allRows If `FALSE` (the default) return a data frame containing
#' the selected rows. If `TRUE`, the input data frame will have a new
#' column, `selected_`, which indicates whether the row was selected or not.
#' @param threshold A maximum distance (in pixels) to the pointer location.
#' Rows in the data frame will be selected if the distance to the pointer is
#' less than `threshold`.
#' @param maxpoints Maximum number of rows to return. If `NULL` (the default),
#' will return all rows within the threshold distance.
#' @param addDist If TRUE, add a column named `dist_` that contains the
#' distance from the coordinate to the point, in pixels. When no pointer
#' event has yet occurred, the value of `dist_` will be `NA`.
#' @seealso [plotOutput()] for example usage.
#' @export
#' @examples
#' \dontrun{
#' # Note that in practice, these examples would need to go in reactives
#' # or observers.
#'
#' # This would select all points within 5 pixels of the click
#' nearPoints(mtcars, input$plot_click)
#'
#' # Select just the nearest point within 10 pixels of the click
#' nearPoints(mtcars, input$plot_click, threshold = 10, maxpoints = 1)
#'
#' }
brushedPoints <- function(df, brush, xvar = NULL, yvar = NULL,
panelvar1 = NULL, panelvar2 = NULL,
allRows = FALSE) {
if (is.null(brush)) {
if (allRows)
df$selected_ <- FALSE
else
df <- df[0, , drop = FALSE]
return(df)
}
if (is.null(brush$xmin)) {
stop("brushedPoints requires a brush object with xmin, xmax, ymin, and ymax.")
}
# Which direction(s) the brush is selecting over. Direction can be 'x', 'y',
# or 'xy'.
use_x <- grepl("x", brush$direction)
use_y <- grepl("y", brush$direction)
# We transitioned to using %||% in Shiny 1.6.0. Previously, these vars could
# be NA, because the old %OR% operator recognized NA. These warnings and
# the NULL replacement are here just to ease the transition in case anyone is
# using NA. We can remove these checks in a future version of Shiny.
# https://github.com/rstudio/shiny/pull/3172
if (is_na(xvar)) { xvar <- NULL; warning("xvar should be NULL, not NA.") }
if (is_na(yvar)) { yvar <- NULL; warning("yvar should be NULL, not NA.") }
if (is_na(panelvar1)) { panelvar1 <- NULL; warning("panelvar1 should be NULL, not NA.") }
if (is_na(panelvar2)) { panelvar2 <- NULL; warning("panelvar2 should be NULL, not NA.") }
# Try to extract vars from brush object
xvar <- xvar %||% brush$mapping$x
yvar <- yvar %||% brush$mapping$y
panelvar1 <- panelvar1 %||% brush$mapping$panelvar1
panelvar2 <- panelvar2 %||% brush$mapping$panelvar2
# Filter out x and y values
keep_rows <- rep(TRUE, nrow(df))
if (use_x) {
if (is.null(xvar))
stop("brushedPoints: not able to automatically infer `xvar` from brush")
if (!(xvar %in% names(df)))
stop("brushedPoints: `xvar` ('", xvar ,"') not in names of input")
keep_rows <- keep_rows & within_brush(df[[xvar]], brush, "x")
}
if (use_y) {
if (is.null(yvar))
stop("brushedPoints: not able to automatically infer `yvar` from brush")
if (!(yvar %in% names(df)))
stop("brushedPoints: `yvar` ('", yvar ,"') not in names of input")
keep_rows <- keep_rows & within_brush(df[[yvar]], brush, "y")
}
# Find which rows are matches for the panel vars (if present)
if (!is.null(panelvar1))
keep_rows <- keep_rows & panelMatch(brush$panelvar1, df[[panelvar1]])
if (!is.null(panelvar2))
keep_rows <- keep_rows & panelMatch(brush$panelvar2, df[[panelvar2]])
if (allRows) {
df$selected_ <- keep_rows
df
} else {
df[keep_rows, , drop = FALSE]
}
}
# The `brush` data structure will look something like the examples below.
# For base graphics, `mapping` is empty, and there are no panelvars:
# List of 8
# $ xmin : num 3.73
# $ xmax : num 4.22
# $ ymin : num 13.9
# $ ymax : num 19.8
# $ coords_css:List of 4
# ..$ xmin: int 260
# ..$ xmax: int 298
# ..$ ymin: num 112
# ..$ ymax: num 205
# $ coords_img:List of 4
# ..$ xmin: int 325
# ..$ xmax: num 372
# ..$ ymin: num 140
# ..$ ymax: num 257
# $ img_css_ratio:List of 2
# ..$ x: num 1.25
# ..$ y: num 1.25
# $ mapping: Named list()
# $ domain :List of 4
# ..$ left : num 1.36
# ..$ right : num 5.58
# ..$ bottom: num 9.46
# ..$ top : num 34.8
# $ range :List of 4
# ..$ left : num 58
# ..$ right : num 429
# ..$ bottom: num 226
# ..$ top : num 58
# $ log :List of 2
# ..$ x: NULL
# ..$ y: NULL
# $ direction: chr "y"
#
# For ggplot2, the mapping vars usually will be included, and if faceting is
# used, they will be listed as panelvars:
# List of 10
# $ xmin : num 3.18
# $ xmax : num 3.78
# $ ymin : num 17.1
# $ ymax : num 20.4
# $ panelvar1: chr "6"
# $ panelvar2: chr "0
# $ coords_css:List of 4
# ..$ xmin: int 260
# ..$ xmax: int 298
# ..$ ymin: num 112
# ..$ ymax: num 205
# $ coords_img:List of 4
# ..$ xmin: int 325
# ..$ xmax: num 372
# ..$ ymin: num 140
# ..$ ymax: num 257
# $ img_css_ratio:List of 2
# ..$ x: num 1.25
# ..$ y: num 1.25
# $ mapping :List of 4
# ..$ x : chr "wt"
# ..$ y : chr "mpg"
# ..$ panelvar1: chr "cyl"
# ..$ panelvar2: chr "am"
# $ domain :List of 4
# ..$ left : num 1.32
# ..$ right : num 5.62
# ..$ bottom: num 9.22
# ..$ top : num 35.1
# $ range :List of 4
# ..$ left : num 172
# ..$ right : num 300
# ..$ bottom: num 144
# ..$ top : num 28.5
# $ log :List of 2
# ..$ x: NULL
# ..$ y: NULL
# $ direction: chr "y"
#' @export
#' @rdname brushedPoints
nearPoints <- function(df, coordinfo, xvar = NULL, yvar = NULL,
panelvar1 = NULL, panelvar2 = NULL,
threshold = 5, maxpoints = NULL, addDist = FALSE,
allRows = FALSE) {
if (is.null(coordinfo)) {
if (addDist)
df$dist_ <- NA_real_
if (allRows)
df$selected_ <- FALSE
else
df <- df[0, , drop = FALSE]
return(df)
}
if (is.null(coordinfo$x)) {
stop("nearPoints requires a click/hover/double-click object with x and y values.")
}
# We transitioned to using %||% in Shiny 1.6.0. Previously, these vars could
# be NA, because the old %OR% operator recognized NA. These warnings and
# the NULL replacement are here just to ease the transition in case anyone is
# using NA. We can remove these checks in a future version of Shiny.
# https://github.com/rstudio/shiny/pull/3172
if (is_na(xvar)) { xvar <- NULL; warning("xvar should be NULL, not NA.") }
if (is_na(yvar)) { yvar <- NULL; warning("yvar should be NULL, not NA.") }
if (is_na(panelvar1)) { panelvar1 <- NULL; warning("panelvar1 should be NULL, not NA.") }
if (is_na(panelvar2)) { panelvar2 <- NULL; warning("panelvar2 should be NULL, not NA.") }
# Try to extract vars from coordinfo object
xvar <- xvar %||% coordinfo$mapping$x
yvar <- yvar %||% coordinfo$mapping$y
panelvar1 <- panelvar1 %||% coordinfo$mapping$panelvar1
panelvar2 <- panelvar2 %||% coordinfo$mapping$panelvar2
if (is.null(xvar))
stop("nearPoints: not able to automatically infer `xvar` from coordinfo")
if (is.null(yvar))
stop("nearPoints: not able to automatically infer `yvar` from coordinfo")
if (!(xvar %in% names(df)))
stop("nearPoints: `xvar` ('", xvar ,"') not in names of input")
if (!(yvar %in% names(df)))
stop("nearPoints: `yvar` ('", yvar ,"') not in names of input")
# Extract data values from the data frame
coordinfo <- fortifyDiscreteLimits(coordinfo)
x <- asNumber(df[[xvar]], coordinfo$domain$discrete_limits$x)
y <- asNumber(df[[yvar]], coordinfo$domain$discrete_limits$y)
# Get the coordinates of the point (in img pixel coordinates)
point_img <- coordinfo$coords_img
# Get coordinates of data points (in img pixel coordinates)
data_img <- scaleCoords(x, y, coordinfo)
# Get x/y distances (in css coordinates)
dist_css <- list(
x = (data_img$x - point_img$x) / coordinfo$img_css_ratio$x,
y = (data_img$y - point_img$y) / coordinfo$img_css_ratio$y
)
# Distances of data points to the target point, in css pixels.
dists <- sqrt(dist_css$x^2 + dist_css$y^2)
if (addDist)
df$dist_ <- dists
keep_rows <- (dists <= threshold)
# Find which rows are matches for the panel vars (if present)
if (!is.null(panelvar1))
keep_rows <- keep_rows & panelMatch(coordinfo$panelvar1, df[[panelvar1]])
if (!is.null(panelvar2))
keep_rows <- keep_rows & panelMatch(coordinfo$panelvar2, df[[panelvar2]])
# Track the indices to keep
keep_idx <- which(keep_rows)
# Order by distance
dists <- dists[keep_idx]
keep_idx <- keep_idx[order(dists)]
# Keep max number of rows
if (!is.null(maxpoints) && length(keep_idx) > maxpoints) {
keep_idx <- keep_idx[seq_len(maxpoints)]
}
if (allRows) {
# Add selected_ column if needed
df$selected_ <- FALSE
df$selected_[keep_idx] <- TRUE
} else {
# If we don't keep all rows, return just the selected rows, sorted by
# distance.
df <- df[keep_idx, , drop = FALSE]
}
df
}
# The coordinfo data structure will look something like the examples below.
# For base graphics, `mapping` is empty, and there are no panelvars:
# List of 7
# $ x : num 4.37
# $ y : num 12
# $ coords_css:List of 2
# ..$ x: int 286
# ..$ y: int 192
# $ coords_img:List of 2
# ..$ x: num 358
# ..$ y: int 240
# $ img_css_ratio:List of 2
# ..$ x: num 1.25
# ..$ y: num 1.25
# $ mapping : Named list()
# $ domain :List of 4
# ..$ left : num 1.36
# ..$ right : num 5.58
# ..$ bottom: num 9.46
# ..$ top : num 34.8
# $ range :List of 4
# ..$ left : num 58
# ..$ right : num 429
# ..$ bottom: num 226
# ..$ top : num 58
# $ log :List of 2
# ..$ x: NULL
# ..$ y: NULL
# $ .nonce : num 0.343
#
# For ggplot2, the mapping vars usually will be included, and if faceting is
# used, they will be listed as panelvars:
# List of 9
# $ x : num 3.78
# $ y : num 17.1
# $ coords_css:List of 2
# ..$ x: int 286
# ..$ y: int 192
# $ coords_img:List of 2
# ..$ x: num 358
# ..$ y: int 240
# $ img_css_ratio:List of 2
# ..$ x: num 1.25
# ..$ y: num 1.25
# $ panelvar1 : chr "6"
# $ panelvar2 : chr "0"
# $ mapping :List of 4
# ..$ x : chr "wt"
# ..$ y : chr "mpg"
# ..$ panelvar1: chr "cyl"
# ..$ panelvar2: chr "am"
# $ domain :List of 4
# ..$ left : num 1.32
# ..$ right : num 5.62
# ..$ bottom: num 9.22
# ..$ top : num 35.1
# $ range :List of 4
# ..$ left : num 172
# ..$ right : num 300
# ..$ bottom: num 144
# ..$ top : num 28.5
# $ log :List of 2
# ..$ x: NULL
# ..$ y: NULL
# $ .nonce : num 0.603
# Helper to determine if data values are within the limits of
# an input brush
within_brush <- function(vals, brush, var = "x") {
var <- match.arg(var, c("x", "y"))
brush <- fortifyDiscreteLimits(brush)
vals <- asNumber(vals, brush$domain$discrete_limits[[var]])
# It's possible for a non-missing data values to not
# map to the axis limits, for example:
# https://github.com/rstudio/shiny/pull/2410#issuecomment-488100881
!is.na(vals) &
vals >= brush[[paste0(var, "min")]] &
vals <= brush[[paste0(var, "max")]]
}
# Coerce various types of variables to numbers. This works for Date, POSIXt,
# characters, and factors. Used because the mouse coords are numeric.
# The `levels` argument should be used when mapping this variable to
# a known set of discrete levels, which is needed for ggplot2 since
# it allows you to control ordering and possible values of a discrete
# positional scale (#2410)
asNumber <- function(x, levels = NULL) {
if (length(levels)) return(match(x, levels))
if (is.character(x)) x <- as.factor(x)
if (is.factor(x)) x <- as.integer(x)
as.numeric(x)
}
# Ensure the discrete limits/levels of a coordmap received
# from the client matches the data structure sent the client.
#
# When we construct the coordmap (in getGgplotCoordmap()),
# we save a character vector which may contain missing values
# (e.g., c("a", "b", NA)). When that same character is received
# from the client, it runs through decodeMessage() which sets
# simplifyVector=FALSE, which means NA are replaced by NULL
# (because jsonlite::fromJSON('["a", "b", null]') -> list("a", "b", NULL))
#
# Thankfully, it doesn't seem like it's meaningful for limits to
# contains a NULL in the 1st place, so we simply treat NULL like NA.
# For more context, https://github.com/rstudio/shiny/issues/2666
fortifyDiscreteLimits <- function(coord) {
# Note that discrete_limits$x/y are populated iff
# x/y are discrete mappings
coord$domain$discrete_limits <- lapply(
coord$domain$discrete_limits,
function(var) {
# if there is an 'explicit' NULL, then the limits are NA
if (is.null(var)) return(NA)
vapply(var, function(x) {
if (is.null(x) || isTRUE(is.na(x))) NA_character_ else x
}, character(1))
}
)
coord
}
# Given a panelvar value and a vector x, return logical vector indicating which
# items match the panelvar value. Because the panelvar value is always a
# string but the vector could be numeric, it might be necessary to coerce the
# panelvar to a number before comparing to the vector.
panelMatch <- function(search_value, x) {
if (is.null(search_value)) return(is.na(x))
if (is.numeric(x)) search_value <- as.numeric(search_value)
x == search_value
}
# ----------------------------------------------------------------------------
# Scaling functions
# These functions have direct analogs in Javascript code, except these are
# vectorized for x and y.
# Map a value x from a domain to a range. If clip is true, clip it to the
# range.
mapLinear <- function(x, domainMin, domainMax, rangeMin, rangeMax, clip = TRUE) {
factor <- (rangeMax - rangeMin) / (domainMax - domainMin)
val <- x - domainMin
newval <- (val * factor) + rangeMin
if (clip) {
maxval <- max(rangeMax, rangeMin)
minval <- min(rangeMax, rangeMin)
newval[newval > maxval] <- maxval
newval[newval < minval] <- minval
}
newval
}
# Scale val from domain to range. If logbase is present, use log scaling.
scale1D <- function(val, domainMin, domainMax, rangeMin, rangeMax,
logbase = NULL, clip = TRUE) {
if (!is.null(logbase))
val <- log(val, logbase)
mapLinear(val, domainMin, domainMax, rangeMin, rangeMax, clip)
}
# Inverse scale val, from range to domain. If logbase is present, use inverse
# log (power) transformation.
scaleInv1D <- function(val, domainMin, domainMax, rangeMin, rangeMax,
logbase = NULL, clip = TRUE) {
res <- mapLinear(val, rangeMin, rangeMax, domainMin, domainMax, clip)
if (!is.null(logbase))
res <- logbase ^ res
res
}
# Scale x and y coordinates from domain to range, using information in
# scaleinfo. scaleinfo must contain items $domain, $range, and $log. The
# scaleinfo object corresponds to one element from the coordmap object generated
# by getPrevPlotCoordmap or getGgplotCoordmap; it is the scaling information for
# one panel in a plot.
scaleCoords <- function(x, y, scaleinfo) {
if (is.null(scaleinfo))
return(NULL)
domain <- scaleinfo$domain
range <- scaleinfo$range
log <- scaleinfo$log
list(
x = scale1D(x, domain$left, domain$right, range$left, range$right, log$x),
y = scale1D(y, domain$bottom, domain$top, range$bottom, range$top, log$y)
)
}
# Inverse scale x and y coordinates from range to domain, using information in
# scaleinfo.
scaleInvCoords <- function(x, y, scaleinfo) {
if (is.null(scaleinfo))
return(NULL)
domain <- scaleinfo$domain
range <- scaleinfo$range
log <- scaleinfo$log
list(
x = scaleInv1D(x, domain$left, domain$right, range$left, range$right, log$x),
y = scaleInv1D(y, domain$bottom, domain$top, range$bottom, range$top, log$y)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.