Nothing
globalVariables("n")
#' The universal model
#'
#' The universal model `SC` is coordinates and binary relations between
#' pairs of coordinates. This is purely an edge (or segment) model, with all
#' higher level structures recorded as groupings of edges.
#' @param x input model
#' @param ... arguments passed to methods
#' @export
#' @return SC model with tables 'object', 'object_link_edge', 'edge', and 'vertex'
#' @examples
#' ## we can produce a high quality triangulation from a low quality one
#' ## see how the TRI edges are maintained (we can't yet filter out holes from DEL)
#' tri <- TRI(minimal_mesh)
#' plot(tri)
#' plot(SC(tri))
SC <- function(x, ...) {
UseMethod("SC")
}
#' #' @export
#' #' @name SC
#' SC.SC0 <- function(x, ...) {
#' v <- sc_vertex(x)
#' o <- sc_object(x)
#' index <- do.call(rbind, o$topology_)
#' o$topology_ <- NULL
#' structure(list(object = O,
#' object_link_edge = oXe,
#' edge = edge,
#' vertex = V,
#' meta = meta),
#' ## a special join_ramp, needs edge to split on vertex
#' join_ramp = c("object", "object_link_edge", "edge", "vertex"),
#' class = c("SC", "sc"))
#' }
#' @export
#' @name SC
SC.default <- function(x, ...) {
B <- SC0(x, ...)
O <- sc_object(B)
O$topology_ <- NULL
if (!"object_" %in% names(O)) O[["object_"]] <- sc_uid(O)
O1 <- O["object_"]
O1[["edge_"]] <- B$object[["topology_"]]
meta <- tibble::tibble(proj = get_projection(x), ctime = format(Sys.time(), tz = "UTC"))
for (i in seq_along(O1$edge_)) O1$edge_[[i]]$object_ <- O1$object_[i]
edge <- do.call(rbind, O1$edge_)
tst <- c(".vx0", ".vx1") %in% names(edge)
if (!all(tst)) {
if (sum(tst) == 1) stop("model has only 0-space vertices (is it point-topology? Try '?SC0'. )")
stop("unable to produce edge form of this data")
}
V <- sc_vertex(B)
if (!"vertex_" %in% names(V)) V[["vertex_"]] <- sc_uid(V)
## these are now the edges, but we need to classify which changed direction
v_0 <- pmin(edge$.vx0, edge$.vx1)
v_1 <- pmax(edge$.vx0, edge$.vx1)
edge$native_ <- v_0 == edge$.vx0 ## if TRUE the orientation is how it came in
## we now have ordered edges
edge[[".vx0"]] <- V[["vertex_"]][v_0]
edge[[".vx1"]] <- V[["vertex_"]][v_1]
edge[["u_edge"]] <- dplyr::group_indices(dplyr::group_by(edge, .data$.vx0, .data$.vx1))
edge[["edge_"]] <- sc_uid(length(unique(edge$u_edge)))[edge$u_edge]
oXe <- edge[c("object_", "edge_", "native_")]
edge$native_ <- edge$object_ <- NULL
edge <- edge[!duplicated(edge$u_edge), ]
edge$object_ <- edge$u_edge <- NULL
structure(list(object = O,
object_link_edge = oXe,
edge = edge,
vertex = V,
meta = meta),
## a special join_ramp, needs edge to split on vertex
join_ramp = c("object", "object_link_edge", "edge", "vertex"),
class = c("SC", "sc"))
}
## triangle classification
#' @name SC
#' @export
SC.TRI <- function(x, ...) {
segment <- purrr::map_df(purrr::transpose(x$triangle[c(".vx0", ".vx1", ".vx2")]),
~to_tibble(tri_to_seg(unlist(.x))), .id = "triangle_")
edges <- as.integer(factor(apply(cbind(segment$.vx0, segment$.vx1), 1,
function(x) paste(sort(x), collapse = "-"))))
segment$edge_ <- sc_uid(length(unique(edges)))[edges]
segment$object_ <- x$triangle$object_[as.numeric(segment$triangle_)]
object_link_edge <- dplyr::distinct(segment, .data$object_, .data$edge_, .data$object_)
object_link_edge[["native_"]] <- TRUE ## always native
segment <- segment[c(".vx0", ".vx1", "edge_")] %>% inner_join(object_link_edge, "edge_") %>%
dplyr::transmute(.vx0 = .data$.vx0, .vx1 = .data$.vx1, edge_ = .data$edge_)
structure(list(object = x$object, object_link_edge = object_link_edge,
edge = segment, vertex = x$vertex,
meta = rbind(dplyr::mutate(x$meta, ctime = Sys.time()), x$meta)), class = c("SC", "sc"))
}
#' @name SC
#' @export
SC.pslg <- function(x, ...) {
SC(SC0(x))
}
## need to identify segments that were input and are
## shared by two triangles, set to invisible
tri_to_seg <- function(x) {
x[c(1, 2, 2, 3, 3, 1)]
}
to_tibble <- function(x) {
mat <- matrix(x, ncol = 2, byrow = TRUE)
colnames(mat) <- c(".vx0", ".vx1")
tibble::as_tibble(mat)
}
##https://github.com/hypertidy/silicate/issues/46
ring_cycles <- function(aa) {
ii <- 1
set0 <- ii
visited <- logical(nrow(aa))
while(!all(visited)) {
i0 <- ii
repeat {
ii <- which(aa[,1] == aa[ii, 2])
if (length(ii) < 1 | ii[1] == i0) {
set0 <- c(set0, NA_integer_)
break;
}
set0 <- c(set0, ii)
}
visited <- seq(nrow(aa)) %in% stats::na.omit(set0)
ii <- which(!visited)[1L]
if (!is.na(ii)) set0 <- c(set0, ii)
}
l <- split(set0, c(0, cumsum(abs(diff(is.na(set0))))))
bind_rows(lapply(l[!unlist(lapply(l, function(x) all(is.na(x))))],
function(x) tibble(row = x)), .id = "cycle")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.